CRSS of Mg-X(X=Zn, Y) Binary Solid Solution via First-Principles Study

Article Preview

Abstract:

To investigate the deformation behavior of Mg-X(X=Zn, Y) binary solid solution, the strain-stress curve of crystal cell along [0001] for Mg-1.85at.%X(X=Zn, Y) alloy were simulated using first-principles calculations in this study. The simulation presents directly the critical resolved shear stress for pyramidal plane slip systems for Mg-1.85at.%X(X=Zn, Y) alloy. The results show that the minimum critical resolved shear stress (CRSS) of Mg, Mg-1.85at. %Zn and Mg-1.85at. %Y for pyramidal plane slip systems is 2.24, 2.72, 2.96 GPa respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

614-619

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Taylor GI, Plastic strain in metals, Jpn. Inst. Met. 62 (1938) 307-38.

Google Scholar

[2] S. Ando, H. Tonda, Non-basal slip in magnesium-lithium alloy single crystals, Materials Transactions, Jpn. Inst. Met. 41 (2000) 1188-1191.

DOI: 10.2320/matertrans1989.41.1188

Google Scholar

[3] S. Agnew, J. Horton, M. Yoo, Transmission electron microscopy investigation of <c+a> dislocations in Mg and α-solid solution Mg-Li alloys, Metall. Mater. Trans. A. 33 (2002) 851-858.

DOI: 10.1007/s11661-002-0154-x

Google Scholar

[4] F. Kang, Z. Li, J.T. Wang, P. Cheng, H.Y. Wu, The activation of <c + a> non-basal slip in magnesium alloys, J. Mater. Sci. 47 (2012) 7854-7859.

DOI: 10.1007/s10853-012-6344-z

Google Scholar

[5] R. Li, F. Pan, B. Jiang, H. Dong, Q. Yang, Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy, Mat. Sci. Eng. A. 562 (2013) 33-38.

DOI: 10.1016/j.msea.2012.11.032

Google Scholar

[6] Y. Zeng, B. Jiang, R. Li, J. He, X. Xia, F. Pan, Effect of Li content on microstructure, texture and mechanical properties of cold rolled Mg-3Al-1Zn alloy, Mat. Sci. Eng. A. 631 (2015) 189-195.

DOI: 10.1016/j.msea.2015.02.023

Google Scholar

[7] S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys, Acta Materialia, 59 (2011) 429-439.

DOI: 10.1016/j.actamat.2010.08.031

Google Scholar

[8] M. Yuasa, M. Hayashi, M. Mabuchi, Y. Chino, Improved plastic anisotropy of Mg-Zn-Ca alloys exhibiting high-stretch formability: A first-principles study, Acta Materialia, 65 (2014) 207-214.

DOI: 10.1016/j.actamat.2013.10.063

Google Scholar

[9] M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, Y. Chino, Effects of group II elements on the cold stretch formability of Mg-Zn alloys, Acta. Mater. 83 (2015) 294-303.

DOI: 10.1016/j.actamat.2014.10.005

Google Scholar

[10] H. Yan, R.S. Chen, E.H. Han, A comparative study of texture and ductility of Mg-1. 2Zn-0. 8Gd alloy fabricated by rolling and equal channel angular extrusion, Mater. Charact. 62 (2011) 321-326.

DOI: 10.1016/j.matchar.2011.01.005

Google Scholar

[11] D. Wu, R.S. Chen, E.H. Han, Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets, J. Alloy. Compd. 509 (2011) 2856-2863.

DOI: 10.1016/j.jallcom.2010.11.141

Google Scholar

[12] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[13] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[14] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[15] Y. Qi, L.G. Hector Jr., Adhesion and adhesive transfer at aluminum/diamond interfaces: A first-principles study, Phys. Rev. B. 69 (2004) 235401-235414.

DOI: 10.1103/physrevb.69.235401

Google Scholar

[16] S. Ogata, H. Kitagawa, Ab initio tensile testing simulation of aluminum and aluminum nitride ceramics based on density functional theory, Comput. Mater. Sci. 15 (1999) 435-440.

DOI: 10.1016/s0927-0256(99)00030-0

Google Scholar

[17] L.M. Liu, S.Q. Wang, H.Q. Ye, First-principles study of the effect of hydrogen on the metal-ceramic interface, J. Phys.: Condens. Mater. 17 (2005) 5335-5348.

DOI: 10.1088/0953-8984/17/35/002

Google Scholar

[18] H.Z. Zhang, L.M. Liu, S.Q. Wang, First-principles study of the tensile and fracture of the Al/TiN interface, Comput. Mater. Sci. 38 (2007) 800-806.

DOI: 10.1016/j.commatsci.2006.05.017

Google Scholar

[19] L. Gao, R.S. Chen, E.H. Han, Solid solution strengthening behaviors in binary Mg–Y single phase alloys, J. Alloy. Compd. 472 (2009) 234-240.

DOI: 10.1016/j.jallcom.2008.04.049

Google Scholar

[20] C.H. Caceres, A. Blake, The Strength of Concentrated Mg–Zn Solid Solutions, Phys. Status Solidi A. 194 (2002) 147-158.

DOI: 10.1002/1521-396x(200211)194:1<147::aid-pssa147>3.0.co;2-l

Google Scholar