[1]
L.P. Kubin, Dislocation, mesoscale simulations and plastic flow, Oxford University Press, (2013).
Google Scholar
[2]
M.A. Meyers, H. Jarmakani , E.M. Bringa, Dislocations in shock compression and release, In: J.P. Hirth and L. Kubin (eds. ), Dislocations in Solids, Elsevier B.V., 2009, p.91–197.
DOI: 10.1016/s1572-4859(09)01502-2
Google Scholar
[3]
R.A. Austin a, D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. plast. 27 (2011) 1–24.
DOI: 10.1016/j.ijplas.2010.03.002
Google Scholar
[4]
R.W. Armstrong, W. Arnold, F.J. Zerilli, Dislocation mechanics of copper and iron in high rate deformation tests, J. Appl. Phys. 105 (2009) 023511.
DOI: 10.1063/1.3067764
Google Scholar
[5]
R. LeSar, Simulations of Dislocation Structure and Response, Annu. Rev. Condens. Matter Phys. 5 (2014) 375–407.
DOI: 10.1146/annurev-conmatphys-031113-133858
Google Scholar
[6]
V.V. Bulatov, L.L. Hsiung, M. Tang, Dislocation multi-junctions and strain hardening, Nature. 440 (2006) 1174-1179.
Google Scholar
[7]
C.Z. Zhou, S. B. Biner, R. LeSar, Discrete dislocation dynamics simulations of plasticity at small scales, Acta. Mater., 58 (2010), 1565–1577.
DOI: 10.1016/j.actamat.2009.11.001
Google Scholar
[8]
P. J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis, J. Mech. Phys. Solids. 56 (2008) 132-156.
DOI: 10.1016/j.jmps.2007.03.009
Google Scholar
[9]
Z.L. Liu, X.M. Liu, Z. Zhuang, A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales, Int. J. plast. 25 (2009) 1436.
DOI: 10.1016/j.ijplas.2008.11.006
Google Scholar
[10]
J.A. El-Awady, M.D. Uchic, P.A. Shade S.L. Kim, S.I. Rao D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals, Scripta. Mater. 68 (2013) 207–210.
DOI: 10.1016/j.scriptamat.2012.10.035
Google Scholar
[11]
J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. Commun. 6 (2015) 5926.
DOI: 10.1038/ncomms6926
Google Scholar
[12]
H.D. Fan, S. Aubry, A. Arsenlis, J. A. El-Awady, Orientation influence on grain size effects in ultrafine-grained magnesium, Script. Mater. 97 (2015) 25–28.
DOI: 10.1016/j.scriptamat.2014.10.031
Google Scholar
[13]
J. R Greer, C. R Weinberger, W. Cai, Comparing the strength of f. c. c. and b. c. c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations, Mater. Sci. Eng. A. 493 (2008) 21-25.
DOI: 10.1016/j.msea.2007.08.093
Google Scholar
[14]
Z.Q. Wang, I.J. Beyerlein, R. LeSar, Plastic anisotropy in fcc single crystals in high rate deformation, Int. J. plast. 25 (2009) 26–48.
DOI: 10.1016/j.ijplas.2008.01.006
Google Scholar
[15]
M.A. Shehadeh, Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes, Philos. Mag. 92 (2012) 1173–1197.
DOI: 10.1080/14786435.2011.637988
Google Scholar
[16]
J.R. Greer, W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B. 73 (2006) 245410.
DOI: 10.1103/physrevb.73.245410
Google Scholar
[17]
A.H. Delandar, S.M.H. Haghighat, P. Korzhavyi, Rolf Sandströma, Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates, Int. J. Mater. Res. 107 (2016) 988-995.
DOI: 10.3139/146.111433
Google Scholar
[18]
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Model. Simul. Mater. Sci. Eng. 15 (2007) 553-595.
DOI: 10.1088/0965-0393/15/6/001
Google Scholar
[19]
V.V. Bulatov, W. Cai, Computer Simulations of Dislocations, Oxford University Press, (2006).
Google Scholar
[20]
J.A. El-Awady, M.D. Uchic, P.A. Shade, S.L. Kim, S.I. Rao, D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals, Script. Mater. 68 (2013) 207–210.
DOI: 10.1016/j.scriptamat.2012.10.035
Google Scholar