Influence of Initial Defects on the Mechanical Properties of Single Crystal Copper: Discrete Dislocation Dynamics Study

Article Preview

Abstract:

In this paper, three dimensional discrete dislocation dynamics method was used to quantitatively investigate the influence of initial defects on mechanical response of single crystal copper. Both the irradiation defects (interstitial loops) and random dislocation lines with different densities are considered. The simulation results demonstrate that the yield strength of single crystal copper is higher with higher initial dislocation density and higher interstitial loop density. Dislocation density increases quickly by nucleation and multiplication and microbands are formed during plastic deformation when only the random dislocation lines are initially considered. Characteristics of microbands show excellent agreement with experiment results. Dislocation multiplication is suppressed in the presence of interstitial loops, and junctions and locks between dislocations and interstitial loops are formed. Dislocation density evolution shows fluctuation accompanied with strain-stress curve fluctuation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-635

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.P. Kubin, Dislocation, mesoscale simulations and plastic flow, Oxford University Press, (2013).

Google Scholar

[2] M.A. Meyers, H. Jarmakani , E.M. Bringa, Dislocations in shock compression and release, In: J.P. Hirth and L. Kubin (eds. ), Dislocations in Solids, Elsevier B.V., 2009, p.91–197.

DOI: 10.1016/s1572-4859(09)01502-2

Google Scholar

[3] R.A. Austin a, D.L. McDowell, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. plast. 27 (2011) 1–24.

DOI: 10.1016/j.ijplas.2010.03.002

Google Scholar

[4] R.W. Armstrong, W. Arnold, F.J. Zerilli, Dislocation mechanics of copper and iron in high rate deformation tests, J. Appl. Phys. 105 (2009) 023511.

DOI: 10.1063/1.3067764

Google Scholar

[5] R. LeSar, Simulations of Dislocation Structure and Response, Annu. Rev. Condens. Matter Phys. 5 (2014) 375–407.

DOI: 10.1146/annurev-conmatphys-031113-133858

Google Scholar

[6] V.V. Bulatov, L.L. Hsiung, M. Tang, Dislocation multi-junctions and strain hardening, Nature. 440 (2006) 1174-1179.

Google Scholar

[7] C.Z. Zhou, S. B. Biner, R. LeSar, Discrete dislocation dynamics simulations of plasticity at small scales, Acta. Mater., 58 (2010), 1565–1577.

DOI: 10.1016/j.actamat.2009.11.001

Google Scholar

[8] P. J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis, J. Mech. Phys. Solids. 56 (2008) 132-156.

DOI: 10.1016/j.jmps.2007.03.009

Google Scholar

[9] Z.L. Liu, X.M. Liu, Z. Zhuang, A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales, Int. J. plast. 25 (2009) 1436.

DOI: 10.1016/j.ijplas.2008.11.006

Google Scholar

[10] J.A. El-Awady, M.D. Uchic, P.A. Shade S.L. Kim, S.I. Rao D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals, Scripta. Mater. 68 (2013) 207–210.

DOI: 10.1016/j.scriptamat.2012.10.035

Google Scholar

[11] J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. Commun. 6 (2015) 5926.

DOI: 10.1038/ncomms6926

Google Scholar

[12] H.D. Fan, S. Aubry, A. Arsenlis, J. A. El-Awady, Orientation influence on grain size effects in ultrafine-grained magnesium, Script. Mater. 97 (2015) 25–28.

DOI: 10.1016/j.scriptamat.2014.10.031

Google Scholar

[13] J. R Greer, C. R Weinberger, W. Cai, Comparing the strength of f. c. c. and b. c. c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations, Mater. Sci. Eng. A. 493 (2008) 21-25.

DOI: 10.1016/j.msea.2007.08.093

Google Scholar

[14] Z.Q. Wang, I.J. Beyerlein, R. LeSar, Plastic anisotropy in fcc single crystals in high rate deformation, Int. J. plast. 25 (2009) 26–48.

DOI: 10.1016/j.ijplas.2008.01.006

Google Scholar

[15] M.A. Shehadeh, Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes, Philos. Mag. 92 (2012) 1173–1197.

DOI: 10.1080/14786435.2011.637988

Google Scholar

[16] J.R. Greer, W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B. 73 (2006) 245410.

DOI: 10.1103/physrevb.73.245410

Google Scholar

[17] A.H. Delandar, S.M.H. Haghighat, P. Korzhavyi, Rolf Sandströma, Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates, Int. J. Mater. Res. 107 (2016) 988-995.

DOI: 10.3139/146.111433

Google Scholar

[18] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Model. Simul. Mater. Sci. Eng. 15 (2007) 553-595.

DOI: 10.1088/0965-0393/15/6/001

Google Scholar

[19] V.V. Bulatov, W. Cai, Computer Simulations of Dislocations, Oxford University Press, (2006).

Google Scholar

[20] J.A. El-Awady, M.D. Uchic, P.A. Shade, S.L. Kim, S.I. Rao, D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals, Script. Mater. 68 (2013) 207–210.

DOI: 10.1016/j.scriptamat.2012.10.035

Google Scholar