Iron-Based Amorphous Magnetic Properties by Ni Content Tuning and Isothermal Treatment

Article Preview

Abstract:

In this work, we have developed a series of amorphous alloy ribbons of Fe75Co4B13Y4Nb4-xNix(x=0, 0.5, 1, 2, 3 and 4) which were prepared by industrial purity alloy. Besides, the effects of Ni substitution and isothermal annealing on the saturation magnetization (Ms) and intrinsic coercive force (jHc) were systematically investigated. The SQUID-VSM data pointed out the Ms has been increased by Ni content addition with largest enhanced by 57 % from 114 emu/g to 180 emu/g. After quickly annealing at the optimal temperature, the Ms reached 199 emu/g and jHc decreased from 50 Oe to 33 Oe. DSC measurements displayed that this system has a multi-step crystallization in the heating process. Under the premise of maintaining the excellent amorphous forming ability (AFA), the gap between the two crystallization peaks was broadened with Ni addition, which is good to the forming of α-Fe phase at the annealing treatment. And this was also consistent with the X-ray diffractometer (XRD) results. The Scherrer formula calculated results suggested that isothermal annealing has significant effect on size of α-Fe nanocrystals in annealing process, which obvious affect the Ms and jHc. The annealing temperature and time can not only affect the precipitation of nano-crystalline, but also control the grain size. Hence, an appropriate annealing process is very important to improve the properties of these iron-based nanocrystalline magnetic materials. In conclusion, the results will help us to understand the influence of Ni elements and isothermal annealing on the microstructure and magnetic of Fe75Co4B13Y4Nb4-xNix amorphous alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

661-667

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kim, B.K. Han, D.T. Quach, D. -H. Kim, Y.K. Kim, H. Choi-Yim, Optimization of Fe/Co ratio in Fe(87-xy)CoxTi7Zr6By alloys for high saturation magnetization, Curr. Appl. Phys., 16 (2016) 515-519.

DOI: 10.1016/j.cap.2016.02.005

Google Scholar

[2] A. Wang, C. Zhao, A. He, H. Men, C. Chang, X. Wang, Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability, J. Alloys Compd., 656 (2016) 729-734.

DOI: 10.1016/j.jallcom.2015.09.216

Google Scholar

[3] H. Wang, L. Ma, L. Li, B. Zhang, Fabrication of Fe-based bulk metallic glasses from low-purity industrial raw materials, J. Alloys Compd., 629 (2015) 1-4.

DOI: 10.1016/j.jallcom.2014.11.228

Google Scholar

[4] Z. Xiang, A. Wang, C. Zhao, H. Men, X. Wang, C. Chang, D. Pan, Optimization of thermal stability and soft-magnetic properties of FeSiBPCuNb alloys by Nb content tuning, J. Alloys Compd., 622 (2015) 1000-1004.

DOI: 10.1016/j.jallcom.2014.11.042

Google Scholar

[5] K. Filipecka, P. Pawlik, J. Filipecki, The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr-Fe-BW metallic glasses, J. Alloys Compd., 694 (2017) 228-234.

DOI: 10.1016/j.jallcom.2016.09.321

Google Scholar

[6] G. T, H.H.R. M, Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements, Journal of Magnetism and Magnetic Materials, 408 (2016).

DOI: 10.1016/j.jmmm.2016.02.057

Google Scholar

[7] T. -S. Chin, C. Lin, M. Lee, R. Huang, S. Huang, Bulk nano-crystalline alloys, Mater. Today, 12 (2009) 34-39.

DOI: 10.1016/s1369-7021(09)70044-6

Google Scholar

[8] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC press Boca Raton, FL, (2011).

Google Scholar

[9] N. Nishiyama, K. Tanimoto, A. Makino, Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy NANOMET®, cores, AIP Advances, 6 (2016) 055925.

DOI: 10.1063/1.4944341

Google Scholar

[10] D.J. Sellmyer, R. Skomski, Advanced magnetic nanostructures, Springer Science & Business Media, (2006).

Google Scholar

[11] K. Takenaka, A.D. Setyawan, P. Sharma, N. Nishiyama, A. Makino, Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores, J. Magn. Magn. Mater., 401 (2016) 479-483.

DOI: 10.1016/j.jmmm.2015.10.091

Google Scholar

[12] F. Kong, A. Wang, X. Fan, H. Men, B. Shen, G. Xie, A. Makino, A. Inoue, High Bs Fe84−xSi4B8P4Cux (x = 0 – 1. 5) nanocrystalline alloys with excellent magnetic softness, J. Appl. Phys., 109 (2011) 07A303.

DOI: 10.1063/1.3535290

Google Scholar

[13] Z. Li, A. Wang, C. Chang, Y. Wang, B. Dong, S. Zhou, FeSiBPNbCu alloys with high glass-forming ability and good soft magnetic properties, Intermetallics, 54 (2014) 225-231.

DOI: 10.1016/j.intermet.2014.06.010

Google Scholar

[14] Z. Dan, Y. Zhang, A. Takeuchi, N. Hara, F. Qin, A. Makino, H. Chang, Effect of substitution of Cu by Au and Ag on nanocrystallization behavior of Fe83. 3Si4B8P4Cu0. 7 soft magnetic alloy, J. Alloys Compd., 683 (2016) 263-270.

DOI: 10.1016/j.jallcom.2016.05.027

Google Scholar

[15] M. Zhu, S. Chen, L. Yao, Y. Li, Y. Wang, Z. Jian, F. e. Chang, The influence of Ni or Co substitution for Fe on glass forming ability and magnetic properties in the quaternary Fe–Nb–B–Ni and (Fe, Ni, Co)–Nb–B alloy systems, J. Mater. Res., 30 (2015).

DOI: 10.1557/jmr.2015.42

Google Scholar

[16] M. Zhou, J. Zhou, J. Wei, M. Yang, L. Ma, Enhanced glass-forming ability and mechanical properties of Zr65Cu17. 5Al7. 5Ni10 metallic glass by adding Fe, J. Non-Cryst. Solids, 455 (2017) 1-5.

DOI: 10.1016/j.jnoncrysol.2016.05.004

Google Scholar

[17] W. -H. Wang, C. Dong, C. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.

DOI: 10.1016/j.mser.2004.03.001

Google Scholar

[18] A. Masood, V. Ström, L. Belova, K.V. Rao, J. Ågren, Effect of Ni-substitution on glass forming ability, mechanical, and magnetic properties of FeBNbY bulk metallic glasses, J. Appl. Phys., 113 (2013) 013505.

DOI: 10.1063/1.4772753

Google Scholar

[19] M. Ohta, Y. Yoshizawa, Effect of Heating Rate on Soft Magnetic Properties in Nanocrystalline Fe80. 5Cu1. 5Si4B14and Fe82Cu1Nb1Si4B12Alloys, Appl. Phys. Express, 2 (2009) 023005.

Google Scholar

[20] Z. Zhang, P. Sharma, A. Makino, Role of Si in high Bs and low core-loss Fe85. 2B10−XP4Cu0. 8SiX nano-crystalline alloys, J. Appl. Phys., 112 (2012) 103902.

Google Scholar

[21] L. Xue, H. Liu, L. Dou, W. Yang, C. Chang, A. Inoue, X. Wang, R. -W. Li, B. Shen, Soft magnetic properties and microstructure of Fe84−xNb2B14Cux nanocrystalline alloys, Mater. Des., 56 (2014) 227-231.

DOI: 10.1016/j.matdes.2013.11.008

Google Scholar

[22] P. Sharma, X. Zhang, Y. Zhang, A. Makino, Influence of microstructure on soft magnetic properties of low coreloss and high Bs Fe85Si2B8P4Cu1 nanocrystalline alloy, J. Appl. Phys., 115 (2014) 17A340.

DOI: 10.1063/1.4868188

Google Scholar