Effect of Service Environment on Mechanical Properties of FeCoNiCrAl0.1 Alloy

Article Preview

Abstract:

The effect of service environment on mechanical properties of recrystallizedFeCoNiCrAl0.1 alloy when tested in vacuum, air and gaseous hydrogen was studied in this paper. The results show that the elongations of FeCoNiCrAl0.1 alloy tested in air and gaseous hydrogen are higher than that tested in vacuum. But the tensile strengths of the alloy tested in air and gaseous hydrogen decrease appreciably comparing with that tested in vacuum. With the increase of the hydrogen pressure in the environment, the elongation of the alloy first increases quickly, but the increasing ratio of the elongation decreases obviously when the hydrogen pressure is more than 10 kPa, and the elongation gradually tends to a constant. The fracture modes of FeCoNiCrAl0.1 alloy are all ductile fractures when tested in vacuum, air and gaseous hydrogen, and there are some micro-voids on the fracture surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

674-681

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. -W. Yeh, S. -K. Chen, S. -J. Lin, J. -Y. Gan, T. -S. Chin, T. -T. Shun, C. -H. Tsau, S. -Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] J. -W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat. 31 (2006) 633-648.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[3] M. -H. Tsai, J. -W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107-123.

Google Scholar

[4] C.T. Liu, C.G. Mckamey, E.H. Lee, Environmental effects on room-temperature ductility and fracture in Fe3Al, Scr. Metall. Mater. 24 (1990) 385-389.

DOI: 10.1016/0956-716x(90)90275-l

Google Scholar

[5] Y.X. Chen, X.J. Wan, W.X. Xu, Surface reaction of Ni3Al with water vapor or oxygen, Acta Metall. Sinica. (Eng. Lett. ) 10 (1997) 363-368.

Google Scholar

[6] K.H. Lee, J.T. Lukowski, C.L. White, Effect of gaseous hydrogen and water vapor pressure on environmental embrittlement of Ni3Al, Intermetallics. 5 (1997) 483-490.

DOI: 10.1016/s0966-9795(97)00020-4

Google Scholar

[7] X.J. Wan, J.H. Zhu, K.L. Jing, Environmental embrittlement in Ni3Al+B, Scr. Metall. Mater. 26 (1992) 473-477.

Google Scholar

[8] W. -R. Wang, W. -L. Wang, S. -C. Wang, Y. -C. Tsai, C. -H. Lai, J. -W. Yeh, Effect of Al addition on the microstructure and mechanical property of AlxFeCoNiCr high-entropy alloys, Intermetallics. 26 (2012) 44-51.

DOI: 10.1016/j.intermet.2012.03.005

Google Scholar

[9] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its applicationto characterization of the main alloying element, Mater. Trans. 46 (2005) 2817-2829.

DOI: 10.2320/matertrans.46.2817

Google Scholar

[10] Y. Chen, Environmental hydrogen embrittlement of intermetallics, J. Shanghai University (Natural Science). 17 (2011) 487-502.

Google Scholar

[11] H. Kimura, H. Matsui, Mechanism of hydrogen-induced softening and hardening in iron, Scr. Metall. 21 (1987) 319-324.

DOI: 10.1016/0036-9748(87)90221-3

Google Scholar

[12] P.J. Ferreira, I.M. Robertson, H.K. Birnbaum, Hydrogeneffectsontheinteractionbetween dislocations, Acta Mater. 46 (1998) 1749-1757.

Google Scholar

[13] D.S. Shih, I.M. Robertson, H.K. Birnbaum, Hydrogen embrittlement of alpha titanium: in situ TEM studies, Acta Metall. 36 (1988) 111-124.

DOI: 10.1016/0001-6160(88)90032-6

Google Scholar

[14] J.B. Condon, T.J. Schober, Hydrogen bubbles in metals, J. Nucl. Mater. 207(1993) 1-24.

Google Scholar

[15] Y. Fukai, N. Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen pressures, Phys. Rev. Lett. 73(1994) 1640.

DOI: 10.1103/physrevlett.73.1640

Google Scholar

[16] G. Lu, E. Kaxiras, Hydrogen embrittlement of aluminum: The crucial role of vacancies, Phys. Rev. Lett. 94(2005) 155501.

DOI: 10.1103/physrevlett.94.155501

Google Scholar

[17] R. Nazarov,T. Hickel, J. Neugebauer, First-principles study of the thermodynamics of hydrogen-vacancy interaction in fcc iron, Phy. Rev. B 82(2010) 224104.

DOI: 10.1103/physrevb.82.224104

Google Scholar

[18] S. Wang, X.J. Wan, M.Y. Yao, Environmental embrittlement of ordered and disordered Ni3Fe, Acta Metall. Sin. 35 (1999) 1262-1265.

Google Scholar

[19] G.M. Camus, N.S. Stoloff, D.T. Duquette, The effect of order on hydrogen embrittlement of Ni3Fe, Acta Metall. 37 (1989) 1497-1501.

DOI: 10.1016/0001-6160(89)90181-8

Google Scholar

[20] A.P. Chen, Y.X. Chen, X.J. Wan, J.G. Wang, X.Y. Cheng, Effect of degree of order on the environmental embrittlement of Ni3Fe intermetallics, Chinese J. Mater. Res. 17 (2003) 74-78.

Google Scholar

[21] Y. -L. Liu, Y. Zhang, H. -B. Zhou, G. -H. Lu, F. Liu, G. -N. Luo, Vacancy trapping mechanism for hydrogen bubble formation in metal, Phy. Rev. B79 (2009) 172103.

Google Scholar