[1]
J. -W. Yeh, S. -K. Chen, S. -J. Lin, J. -Y. Gan, T. -S. Chin, T. -T. Shun, C. -H. Tsau, S. -Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
J. -W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat. 31 (2006) 633-648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[3]
M. -H. Tsai, J. -W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107-123.
Google Scholar
[4]
C.T. Liu, C.G. Mckamey, E.H. Lee, Environmental effects on room-temperature ductility and fracture in Fe3Al, Scr. Metall. Mater. 24 (1990) 385-389.
DOI: 10.1016/0956-716x(90)90275-l
Google Scholar
[5]
Y.X. Chen, X.J. Wan, W.X. Xu, Surface reaction of Ni3Al with water vapor or oxygen, Acta Metall. Sinica. (Eng. Lett. ) 10 (1997) 363-368.
Google Scholar
[6]
K.H. Lee, J.T. Lukowski, C.L. White, Effect of gaseous hydrogen and water vapor pressure on environmental embrittlement of Ni3Al, Intermetallics. 5 (1997) 483-490.
DOI: 10.1016/s0966-9795(97)00020-4
Google Scholar
[7]
X.J. Wan, J.H. Zhu, K.L. Jing, Environmental embrittlement in Ni3Al+B, Scr. Metall. Mater. 26 (1992) 473-477.
Google Scholar
[8]
W. -R. Wang, W. -L. Wang, S. -C. Wang, Y. -C. Tsai, C. -H. Lai, J. -W. Yeh, Effect of Al addition on the microstructure and mechanical property of AlxFeCoNiCr high-entropy alloys, Intermetallics. 26 (2012) 44-51.
DOI: 10.1016/j.intermet.2012.03.005
Google Scholar
[9]
A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its applicationto characterization of the main alloying element, Mater. Trans. 46 (2005) 2817-2829.
DOI: 10.2320/matertrans.46.2817
Google Scholar
[10]
Y. Chen, Environmental hydrogen embrittlement of intermetallics, J. Shanghai University (Natural Science). 17 (2011) 487-502.
Google Scholar
[11]
H. Kimura, H. Matsui, Mechanism of hydrogen-induced softening and hardening in iron, Scr. Metall. 21 (1987) 319-324.
DOI: 10.1016/0036-9748(87)90221-3
Google Scholar
[12]
P.J. Ferreira, I.M. Robertson, H.K. Birnbaum, Hydrogeneffectsontheinteractionbetween dislocations, Acta Mater. 46 (1998) 1749-1757.
Google Scholar
[13]
D.S. Shih, I.M. Robertson, H.K. Birnbaum, Hydrogen embrittlement of alpha titanium: in situ TEM studies, Acta Metall. 36 (1988) 111-124.
DOI: 10.1016/0001-6160(88)90032-6
Google Scholar
[14]
J.B. Condon, T.J. Schober, Hydrogen bubbles in metals, J. Nucl. Mater. 207(1993) 1-24.
Google Scholar
[15]
Y. Fukai, N. Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen pressures, Phys. Rev. Lett. 73(1994) 1640.
DOI: 10.1103/physrevlett.73.1640
Google Scholar
[16]
G. Lu, E. Kaxiras, Hydrogen embrittlement of aluminum: The crucial role of vacancies, Phys. Rev. Lett. 94(2005) 155501.
DOI: 10.1103/physrevlett.94.155501
Google Scholar
[17]
R. Nazarov,T. Hickel, J. Neugebauer, First-principles study of the thermodynamics of hydrogen-vacancy interaction in fcc iron, Phy. Rev. B 82(2010) 224104.
DOI: 10.1103/physrevb.82.224104
Google Scholar
[18]
S. Wang, X.J. Wan, M.Y. Yao, Environmental embrittlement of ordered and disordered Ni3Fe, Acta Metall. Sin. 35 (1999) 1262-1265.
Google Scholar
[19]
G.M. Camus, N.S. Stoloff, D.T. Duquette, The effect of order on hydrogen embrittlement of Ni3Fe, Acta Metall. 37 (1989) 1497-1501.
DOI: 10.1016/0001-6160(89)90181-8
Google Scholar
[20]
A.P. Chen, Y.X. Chen, X.J. Wan, J.G. Wang, X.Y. Cheng, Effect of degree of order on the environmental embrittlement of Ni3Fe intermetallics, Chinese J. Mater. Res. 17 (2003) 74-78.
Google Scholar
[21]
Y. -L. Liu, Y. Zhang, H. -B. Zhou, G. -H. Lu, F. Liu, G. -N. Luo, Vacancy trapping mechanism for hydrogen bubble formation in metal, Phy. Rev. B79 (2009) 172103.
Google Scholar