A Centimeter-Size High Toughness Zr-Cu-Al-Nb Bulk Metallic Glass with Nano-Crystallization and Phase Separation

Article Preview

Abstract:

In this paper, a centimeter-size Zr-Cu-Al-Nb bulk metallic glass (BMG) with high notch toughness of 107±13 MPa∙m0.5 was designed and fabricated by copper mold casting. With 1% Nb substitution for Zr in Zr48Cu45Al7 glass forming alloy, the glass forming ability (GFA) and toughness of the BMG were enhanced significantly. The coexistence of nano-crystallization and phase separation in the glassy matrix was observed in Zr47Cu45Al7Nb1, which would possibly lead to the high toughness of this alloy due to the easy and populous nucleation of shear bands and the increasing resistance of shear band propagation. The influences of nano-crystallization and phase separation on the toughness of BMGs are discussed in detail. The strategy utilized in this study provides a novel approach in search for new BMGs with high toughness and good GFA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

668-673

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, A. Takeuchi. Recent development and application products of bulk glassy alloys, Acta Mater. 59(6) (2011) 2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[2] J.J. Lewandowski, W.H. Wang, A.L. Greer. Intrinsic plasticity or brittleness of metallic glasses, Phil. Mag. Lett. 85(2) (2005) 77-87.

DOI: 10.1080/09500830500080474

Google Scholar

[3] M.D. Demetriou, M.E. Launey, G. Garrett, et al. A damage-tolerant glass, Nat. mater. 10(2) (2011) 123-128.

Google Scholar

[4] Q. He, Y.Q. Cheng, E. Ma, et al. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization, Acta Mater. 59(1) (2011) 202-215.

DOI: 10.1016/j.actamat.2010.09.025

Google Scholar

[5] Y.H. Liu, G. Wang, R.J. Wang, et al. Super plastic bulk metallic glasses at room temperature, Science 315(5817) (2007) 1385-1388.

DOI: 10.1126/science.1136726

Google Scholar

[6] K. Mondal, T. Ohkubo, T. Toyama, et al. The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses, Acta Mate. 56(18) (2008) 5329-5339.

DOI: 10.1016/j.actamat.2008.07.012

Google Scholar

[7] K.F. Yao, F. Ruan, Y.Q. Yang, et al. Superductile bulk metallic glass, Appl. Phy. Lett. 88(12) (2006) 122106.

DOI: 10.1063/1.2187516

Google Scholar

[8] S.S. Chen, H.R. Zhang, I. Todd. Phase-separation-enhanced plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass, Scripta Mater. 72 (2014) 47-50.

DOI: 10.1016/j.scriptamat.2013.10.011

Google Scholar

[9] J. Eckert, J. Das, K.B. Kim, et al. High strength ductile Cu-base metallic glass, Intermetallics, 14 (8) (2006) 876-881.

DOI: 10.1016/j.intermet.2006.01.003

Google Scholar

[10] A. Inoue, W. Zhang, T. Tsurui, et al. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass, Phil. Mag. Lett. 85(5) (2005) 221-237.

DOI: 10.1080/09500830500197724

Google Scholar

[11] C. Fan, C. Li, A. Inoue, et al. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr–Ni–Cu–Al metallic glasses, Appl. Phy. Lett. 79(7) (2001) 1024-1026.

DOI: 10.1063/1.1391396

Google Scholar

[12] S. J. Pang, T. Zhang, et al.. Corrosion behavior of Zr-(Nb)-Al-Ni-Cu glassy alloys, Mater. Trans. 41 (2000) 1490-1494.

DOI: 10.2320/matertrans1989.41.1490

Google Scholar

[13] J. Liu, H. Zhang, H. Fu, et al. In situ spherical B2 CuZr phase reinforced ZrCuNiAlNb bulk metallic glass matrix composite, J. Mater. Res. 25(6) (2010) 1159.

DOI: 10.1557/jmr.2010.0138

Google Scholar

[14] C. Fan, D. Qiao, T.W. Wilson, et al. As-cast Zr–Ni–Cu–Al–Nb bulk metallic glasses containing nanocrystalline particles with ductility, Mater. Sci. Eng. A 431(1) (2006) 158-165.

DOI: 10.1016/j.msea.2006.05.129

Google Scholar

[15] D.H. Kim, W.T. Kim, E.S. Park, et al. Phase separation in metallic glasses, Prog. Mater. Sci. 58(8) (2013) 1103-1172.

Google Scholar

[16] M.Q. Jiang, L.H. Dai. Shear-band toughness of bulk metallic glasses, Acta Mater. 59(11) (2011) 4525-4537.

DOI: 10.1016/j.actamat.2011.03.075

Google Scholar

[17] P. Tandaiya, U. Ramamurty, G. Ravichandran, et al. Effect of Poisson's ratio on crack tip fields and fracture behavior of metallic glasses, Acta Mater. 56(20) (2008) 6077-6086.

DOI: 10.1016/j.actamat.2008.08.018

Google Scholar

[18] M.M. Trexler, N.N. Thadhani. Mechanical properties of bulk metallic glasses, Prog. Mater. Sci. 55(8) (2010) 759-839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar