[1]
D.T. Robles, D. Berg. Abnormal wound healing: keloids, Clinics in Dermatology. 25 (2007) 26-32.
DOI: 10.1016/j.clindermatol.2006.09.009
Google Scholar
[2]
S. Igota, M. Tosa, M. Murakami, S. Egawa, H. Shimizu, H. Hyakusoku, M. Ghazizadeh. Identification and Characterization of Wnt Signaling Pathway in Keloid Pathogenesis, International Journal of Medical Sciences. 10 (2013) 344-354.
DOI: 10.7150/ijms.5349
Google Scholar
[3]
C. Huang, G.F. Murphy, S. Akaishi, R. Ogawa. Keloids and hypertrophic scars: update and future directions, Plastic & Reconstructive Surgery Global Open. 1 (2013) e25.
DOI: 10.1097/gox.0b013e31829c4597
Google Scholar
[4]
S. Younai, L.S. Nichter, T. Wellisz, J. Reinisch, M.E. Nimni, T.L. Tuan. Modulation of collagen synthesis by transforming growth factor-beta in keloid and hypertrophic scar fibroblasts, Ann Plast Surg. 33 (1994) 148-151.
DOI: 10.1097/00000637-199408000-00005
Google Scholar
[5]
X. Wang, P. Smith, Ll, Y. Kim, F. Ko, M. Robson. Exogenous transforming growth factor beta(2) modulates collagen I and collagen III synthesis in proliferative scar xenografts in nude rats, Journal of Surgical Research. 87 (1999) 194-200.
DOI: 10.1006/jsre.1999.5757
Google Scholar
[6]
N. S Fedarko, S. E Pacocha, S. K Huang, et al. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts, Journal of Pharmacology and Experimental Therapeutics. 292(2000) 988-994.
Google Scholar
[7]
U.E. Ziegler. [International clinical recommendations on scar management], Plastic & Reconstructive Surgery. 110 (2002) 560.
Google Scholar
[8]
W. Mehnert, K. Mäder. Solid lipid nanoparticles: production, characterization and applications, Advanced Drug Delivery Reviews. 47 (2001) 165-196.
DOI: 10.1016/s0169-409x(01)00105-3
Google Scholar
[9]
A.C. Doty, D.G. Weinstein, K. Hirota, K.F. Olsen, R. Ackermann, W. Yan, S. Choi, S.P. Schwendeman. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres, Journal of Controlled Release. 256 (2017) 19-25.
DOI: 10.1016/j.jconrel.2017.03.031
Google Scholar
[10]
A.C. Doty, Y. Zhang, D.G. Weinstein, Y. Wang, S. Choi, W. Qu, S. Mittal, S.P. Schwendeman. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions, European Journal of Pharmaceutics & Biopharmaceutics Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E V. 113 (2016).
DOI: 10.1016/j.ejpb.2016.11.008
Google Scholar
[11]
I. Rudnik-Jansen, S. Colen, J. Berard, S. Plomp, I. Que, R.M. Van, N. Woike, A. Egas, O.G. Van, M.E. Van. Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide released from a polyester amide microsphere platform, Journal of Controlled Release. 253 (2017).
DOI: 10.1016/j.jconrel.2017.03.014
Google Scholar
[12]
H. Bäckdahl, G. Helenius, A. Bodin, U. Nannmark, B.R. Johansson, R. Bo, P. Gatenholm. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells, Biomaterials. 27 (2006) 2141-2149.
DOI: 10.1016/j.biomaterials.2005.10.026
Google Scholar
[13]
W. Czaja, A. Krystynowicz, S. Bielecki, B.R. Jr. Microbial cellulose-the natural power to heal wounds, Biomaterials. 27 (2006) 145-151.
DOI: 10.1016/j.biomaterials.2005.07.035
Google Scholar
[14]
R. Jonas, L.F. Farah. Production and application of microbial cellulose, Polymer Degradation & Stability. 59 (1998) 101-106.
DOI: 10.1016/s0141-3910(97)00197-3
Google Scholar
[15]
C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, J. Wang. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold, Journal of Porous Materials. 18 (2011) 139-145.
DOI: 10.1007/s10934-010-9364-6
Google Scholar
[16]
S. Moreira, N.B. Silva, J. Almeida-Lima, H.A. Rocha, S.R. Medeiros, A.C. Jr, F.M. Gama. BC nanofibres: in vitro study of genotoxicity and cell proliferation, Toxicology Letters. 189 (2009) 235-241.
DOI: 10.1016/j.toxlet.2009.06.849
Google Scholar
[17]
R.A. Pértile, S. Moreira, R.M. Costa, A. Correia, L. Guardão, F. Gartner, M. Vilanova, M. Gama. Bacterial Cellulose: Long-Term Biocompatibility Studies, Journal of Biomaterials Science Polymer Edition. 23 (2012) 1339-1354.
DOI: 10.1163/092050611x581516
Google Scholar
[18]
A. Stoicaguzun, M. Stroescu, S.I. Jinga, I.M. Jipa, T. Dobre. Microwave assisted synthesis of bacterial cellulose-calcium carbonate composites, Industrial Crops & Products. 50 (2013) 414-422.
DOI: 10.1016/j.indcrop.2013.07.063
Google Scholar
[19]
F.G. Torres, S. Commeaux, O.P. Troncoso. Biocompatibility of Bacterial Cellulose Based Biomaterials, Journal of Functional Biomaterials. 3 (2012) 864-878.
DOI: 10.3390/jfb3040864
Google Scholar