Evaluation of Foaming and Nucleation and Growth Mechanism of Soy-Based Polyurethane Foams

Article Preview

Abstract:

The foaming and nucleation and growth mechanism of soybean oil-based polyurethane (SPU) were determined by the degree of hydrogen bonding, and isocyanate groups. New types of SPU were prepared by the different NCO/OH molar ratio (isocyanate index) from 1.0 to 2.0 in a soy polyol/polyether polyol (MDI) system. Foaming and nucleation and growth mechanisms of SPU were studied by fluorescence microscope (FM), scanning electron microscope (SEM), energy disperse spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). It indicated that the isocyanate index affected remarkably the velocity of foaming and the critical nucleation radius of SPU and the ester functional group increased with the increase of isocyanate index. The nucleation and growth phase transition were dominated by the diffusion controlled nucleation and isocyanate content was the key factor of foam formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

738-745

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Guo, I. Javni, Z. Petrović, Rigid polyurethane foams based on soybean oil, Journal of Applied Polymer Science. 77 (2000) 467-473. DOI: 10. 1002/(SICI)1097-4628 (20000711) 77.

DOI: 10.1002/(sici)1097-4628(20000711)77:2<467::aid-app25>3.0.co;2-f

Google Scholar

[2] P. Tran, D. Graiver, R. Narayan, Ozone-mediated polyol synthesis from soybean oil, Journal of Oil & Fat Industries. 82 (2005) 653-659. DOI: 10. 1007/s11746-005-1124-z.

DOI: 10.1007/s11746-005-1124-z

Google Scholar

[3] J. John, M. Bhattacharya, R.B. Turner, Characterization of polyurethane foams from soybean oil, Journal of Applied Polymer Science. 86 (2002) 3097-3107. DOI: 10. 1002/app. 11322.

DOI: 10.1002/app.11322

Google Scholar

[4] S.S. Narine, X. Kong, L. Bouzidi, et al., Physical properties of polyurethanes produced from polyols from seed oils: II. Foams, Journal of the American Oil Chemists Society. 84 (2006) 65-72. DOI: 10. 1007/s11746-006-1006-4.

DOI: 10.1007/s11746-006-1008-2

Google Scholar

[5] M. Malik, R. Kaur, Mechanical and thermal properties of castor oil-based polyurethane adhesive: effect of TiO2, filler, Advances in Polymer Technology. 35 (2016) 1082-1089. DOI: 10. 1002/adv. 21637.

DOI: 10.1002/adv.21637

Google Scholar

[6] T.W. Pechar, G.L. Wilkes, B. Zhou, et al., Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols, Journal of Applied Polymer Science. 106 (2007).

DOI: 10.1002/app.26569

Google Scholar

[7] W. Liu, K. Xu, C. Wang , et al., Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites, Journal of Thermal Analysis & Calorimetry. 3 (2015) 1-10. DOI: 10. 1007/s10973-015-4690-1.

Google Scholar

[8] Z.S. Petrović, A. Guo, W. Zhang, Structure and properties of polyurethanes based on halogenated and nonhalogenated soy-polyols, Journal of Polymer Science: Part A Polymer Chemistry. 38 (2000) 4062-4069. DOI: 10. 1002/1099-0518(20001115)38.

DOI: 10.1002/1099-0518(20001115)38:22<4062::aid-pola60>3.0.co;2-l

Google Scholar

[9] Z.S. Petrović, W. Zhang, A. Zlatanić, et al., Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks, Journal of Polymers & the Environment. 10 (2002) 5-12. DOI: 10. 1023/A: 1021009821007.

Google Scholar

[10] D. Myriam, E. Maxime, A. Remi, et al., From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products, Polymer Reviews. 52 (2012) 38-79. DOI: org/10. 1080/15583724. 2011. 640443.

DOI: 10.1080/15583724.2011.640443

Google Scholar

[11] J. Zou, Y. Chen, M. Liang, et al., Effect of hard segments on the thermal and mechanical properties of water blown semi-rigid polyurethane foams, Journal of Polymer Research. 22 (2015) 1-10. DOI: 10. 1007/s10965-015-0770-y.

DOI: 10.1007/s10965-015-0770-y

Google Scholar

[12] A.R. Hamilton, O.T. Thomsen, L.R. Jensen, et al., Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams, Composites Science & Technology. 87 (2013) 210-217. DOI: org/10. 1016/j. compscitech. 2013. 08. 013.

DOI: 10.1016/j.compscitech.2013.08.013

Google Scholar

[13] K.N. Raftopoulos, C. Pandis, L. Apekis, et al., Polyurethane-POSS hybrids: Molecular dynamics studies, Polymer. 51 (2010) 709-718. DOI: org/10. 1016/j. polymer. 2009. 11. 067.

DOI: 10.1016/j.polymer.2009.11.067

Google Scholar

[14] M. Azizi, S.A. Mousavi, CO2/H2, separation using a highly permeable polyurethane membrane: Molecular dynamics simulation, Journal of Molecular Structure. 1100 (2015) 401-414. DOI: org/10. 1016/j. molstruc. 2015. 07. 029.

DOI: 10.1016/j.molstruc.2015.07.029

Google Scholar

[15] S. Ji, Nucleation mechanism of thermoset polyurethane foam, Polyurethane Industry. 3(2010)12-16.

Google Scholar

[16] K. Pielichowski, K. Kulesza, E.M. Pearce, Thermal degradation studies on rigid polyurethane foams blown with pentane, Journal of Applied Polymer Science. 88 (2003) 2319-2330. DOI: 10. 1002/app. 11982.

DOI: 10.1002/app.11982

Google Scholar