[1]
S.H. Wild, G. Roglic, A. Green, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani, Diabetes care, 27 (2004) 2569-2569.
DOI: 10.2337/diacare.27.10.2569-a
Google Scholar
[2]
K. Yoshida, Y. Hasebe, S. Takahashi, Layer-by-layer deposited nano-and micro-assemblies for insulin delivery: a review, Materials Science and Engineering: C, 34 (2014) 384-392.
DOI: 10.1016/j.msec.2013.09.045
Google Scholar
[3]
Y. Wang, F. Huang, Y. Sun, Development of shell cross-linked nanoparticles based on boronic acid-related reactions for self-regulated insulin delivery, Journal of Biomaterials Science, Polymer Edition, 28 (2017) 93-106.
DOI: 10.1080/09205063.2016.1246289
Google Scholar
[4]
Q. Guo, Z. Wu, X. Zhang, Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH, Soft Matter, 10 (2014) 911-920.
DOI: 10.1039/c3sm52485j
Google Scholar
[5]
R. Auzely-Velty, E. Hachet, B. Catargi, U.S. Patent 9, 549, 987. (2017).
Google Scholar
[6]
M. Kaiho, J. Sawayama, Y. Morimoto, Parylene based flexible glucose sensor using glucose-responsive fluorescent hydrogel, Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on. IEEE, 2017, pp.534-537.
DOI: 10.1109/memsys.2017.7863461
Google Scholar
[7]
D. Nakayama, Y. Takeoka, M. Watanabe, Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique, Angewandte Chemie, 115 (2003) 4329-4332.
DOI: 10.1002/ange.200351746
Google Scholar
[8]
Y.J. Lee, S.A. Pruzinsky, P.V. Braun, Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response, Langmuir, 20 (2004) 3096-3106.
DOI: 10.1021/la035555x
Google Scholar
[9]
M.C. Lee, S. Kabilan, A. Hussain, Glucose-sensitive holographic sensors for monitoring bacterial growth, Analytical chemistry, 76 (2004) 5748-5755.
DOI: 10.1021/ac049334n
Google Scholar
[10]
J. Yu, C. Qian, Y. Zhang, Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery, Nano letters, 17 (2017) 733-739.
DOI: 10.1021/acs.nanolett.6b03848.s001
Google Scholar
[11]
Y. Dong, W. Wang, O. Veiseh, Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid–Glucose Complexation, Langmuir, 32 (2016) 8743-8747.
DOI: 10.1021/acs.langmuir.5b04755
Google Scholar
[12]
A. Matsumoto, T. Kurata, D. Shiino, Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety, Macromolecules, 37 (2004) 1502-1510.
DOI: 10.1021/ma035382i
Google Scholar
[13]
A.E. Ivanov, H. Larsson, I.Y. Galaev, Synthesis of boronate-containing copolymers of N, N-dimethylacrylamide, their interaction with poly (vinyl alcohol) and rheological behaviour of the gels, Polymer, 45 (2004) 2495-2505.
DOI: 10.1016/j.polymer.2004.02.022
Google Scholar