Phase Transition Behavior and Magnetocaloric Effect in a Heusler Ni50Mn37Sn13 Unidirectional Crystal

Article Preview

Abstract:

A unidireon heating, followed with a ferromagnetic- paramagnetic transition in austenite for the produced unidirectional crystal. Under a magnetic field change of 3 T, the total effective refrigeration capacity was strikingly enhanced up to 125 J/kg, nearly 64% higher than that of polycrystalline master alloy ctional crystal of Heusler Ni50Mn37Sn13 material was produced using a modified high-pressure optical zone-melting furnace. A structural transformation between weak-magnetization martensite and ferromagnetic austenite occurred first up(76 J/kg). The modified high-pressure optical zone-melting technique demonstrated high potentials for the fabrication of super-performance Heusler Ni-Mn-based magnetocaloric materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

759-764

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lyubina, Novel Functional Magnetic Materials, Springer International Publishing, 231 (2016) 115-186.

Google Scholar

[2] S. Fahler, U.K. Rossler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Muller, E. Quandt, K. Albe, Caloric effects in ferroic materials: New concepts for cooling, Advanced Engineering Materials, 14 (2012) 10-19.

DOI: 10.1002/adem.201100178

Google Scholar

[3] H.X. Zheng, W. Wang, S.C. Xue, Q.J. Zhai, J. Frenzel, Z.P. Luo, Composition-dependent crystal structure and martensitic transformation in Heusler Ni-Mn-Sn alloys, Acta Materialia, 61 (2013) 4648-4656.

DOI: 10.1016/j.actamat.2013.04.035

Google Scholar

[4] V.V. Kokorin, S.M. Konoplyuk, A. Dalinger, H.J. Maier, Influence of martensitic transformation on the magnetic transition in Ni-Mn-Ga, Journal of Magnetism and Magnetic Materials, 432 (2017) 266-270.

DOI: 10.1016/j.jmmm.2017.02.008

Google Scholar

[5] H.S. Akkera, N. Choudhary, D. Kaur, Martensitic phase transformations and magnetocaloric effect in Al co-sputtered Ni-Mn-Sb alloy thin films, Materials Science and Engineering: B, 198 (2015) 113-119.

DOI: 10.1016/j.mseb.2015.04.007

Google Scholar

[6] Y. Zhang, L. Zhang, Q. Zheng, X. Zheng, M. Li, J. Du, A. Yan, Enhanced magnetic refrigeration properties in Mn-rich Ni-Mn-Sn ribbons by optimal annealing, Scientific Reports, 5 (2015) 11010.

DOI: 10.1038/srep11010

Google Scholar

[7] C. Tan, Z. Tai, K. Zhang, X. Tian, W. Cai, Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping, Scientific Reports, 7 (2017) 43387.

DOI: 10.1038/srep43387

Google Scholar

[8] V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, I. Lucia, J. Vélez, J.A. Rodríguez-Velamazán, Effect of high-temperature quenching on the magnetostructural transformations and the long-range atomic order of Ni–Mn–Sn and Ni-Mn-Sb metamagnetic shape memory alloys, Acta Materialia, 61 (2013).

DOI: 10.1016/j.actamat.2013.04.040

Google Scholar

[9] R.A. Laudise, W.A. Sunder, H.M. O'Bryan, D.J. Carlson, A.F. Witt, Czochralski growth of single crystals of Ni3−xMnxSn, Journal of Crystal Growth, 118 (1992) 277-286.

DOI: 10.1016/0022-0248(92)90072-q

Google Scholar

[10] Y.J. Huang, Q.D. Hu, J. Liu, L. Zeng, D.F. Zhang, J.G. Li, Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility, Acta Materialia, 61 (2013) 5702-5712.

DOI: 10.1016/j.actamat.2013.06.012

Google Scholar

[11] D.L. Schlagel, Y.L. Wu, W. Zhang, T.A. Lograsso, Chemical segregation during bulk single crystal preparation of Ni-Mn-Ga ferromagnetic shape memory alloys, Journal of Alloys and Compounds, 312 (2000) 77-85.

DOI: 10.1016/s0925-8388(00)01161-0

Google Scholar

[12] J.K. Yu, J. Ren, H.W. Li, J.X. Fu, Q.J. Zhai, Z.P. Luo, H.X. Zheng, A new approach to grow the Heusler Ni-Mn-Sn unidirectional crystal, Journal of Crystal Growth, 402 (2014) 147-150.

DOI: 10.1016/j.jcrysgro.2014.05.021

Google Scholar

[13] J. Ren, H.W. Li, S.T. Feng, Q.J. Zhai, J.X. Fu, Z.P. Luo, H.X. Zheng, Giant magnetocaloric effect in a Heusler Mn50Ni40In10 unidirectional crystal, Intermetallics, 65 (2015) 10-14.

DOI: 10.1016/j.intermet.2015.05.004

Google Scholar

[14] J. Ren, H.W. Li, J.K. Yu, S.T. Feng, Q.J. Zhai, J.X. Fu, Z.P. Luo, H.X. Zheng, Enhanced magnetocaloric effect in Heusler Ni–Mn–Sn unidirectional crystal, Journal of Alloys and Compounds, 634 (2015) 65-69.

DOI: 10.1016/j.jallcom.2015.02.090

Google Scholar

[15] K. Fukushima, K. Sano, T. Kanomata, H. Nishihara, Y. Furutani, T. Shishido, W. Ito, R.Y. Umetsu, R. Kainuma, K. Oikawa, K. Ishida, Phase diagram of Fe-substituted Ni-Mn-Sn shape memory alloys, Scripta Materialia, 61 (2009) 813-816.

DOI: 10.1016/j.scriptamat.2009.07.003

Google Scholar

[16] V.K. Pecharsky, K.A. Pecharsky Jr, Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials, 200 (1999) 44-56.

DOI: 10.1016/s0304-8853(99)00397-2

Google Scholar

[17] V. Provenzano, A.J. Shapiro, R.D. Shull, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron, Nature, 429 (2004) 853-857.

DOI: 10.1038/nature02657

Google Scholar