[1]
O.A. Vargas, A. Caballero, J. Morales, Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?, Nanoscale. 4 (2012) 2083-(2092).
DOI: 10.1039/c2nr11936f
Google Scholar
[2]
H. Shintani, K. Kakinuma, H. Uchida, M. Watanabe, M. Uchida, Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer, J. Power Sources. 280 (2015).
DOI: 10.1016/j.jpowsour.2015.01.132
Google Scholar
[3]
J. Liu, S.Z. Qiao, J.S. Chen, X.W. Lou, X.R. Xing, G.Q. Lu. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chem. Commun. 47 (2011) 12578-12591.
DOI: 10.1039/c1cc13658e
Google Scholar
[4]
Z.U. Yu, L. Tetard, L. Zhai, J. Thomas. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8 (2015) 702-730.
DOI: 10.1039/c4ee03229b
Google Scholar
[5]
M.D. Bhatt, C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes, Phys. Chem. Chem. Phys. 17 (2015) 4799-4844.
DOI: 10.1039/c4cp05552g
Google Scholar
[6]
N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Adv. Mater. 21 (2009) 2664-2680.
DOI: 10.1002/adma.200901079
Google Scholar
[7]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carb on films, Science, 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[8]
R.J. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J.Z. Chen, G.Q. Tan, Y.S. Ye, K. Amine, Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries, Nano Lett. 13 (2013) 4642-4649.
DOI: 10.1021/nl4016683
Google Scholar
[9]
C.Y. Fan, H.H. Li, L.L. Zhang, H.Z. Sun, X.L. Wu, H.M. Xie, J.P. Zhang. Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium-sulfur batteries, Phys. Chem. Chem. Phys. 17 (2015).
DOI: 10.1039/c5cp02531a
Google Scholar
[10]
M.L. Mao, L. Jiang, L.C. Wu, M. Zhang, T.H. Wang, The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 13384-13389.
DOI: 10.1039/c5ta01501d
Google Scholar
[11]
J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries, Adv. Mater. 25 (2013) 4673-4677.
DOI: 10.1002/adma.201301530
Google Scholar
[12]
G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A.C. Ferrari, A.K. Geim, K.S. Novoselov, C. Galiotis, Subjecting a graphene monolayer to tension and compression, Small. 5 (2009) 2397-2402.
DOI: 10.1002/smll.200900802
Google Scholar
[13]
Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 5226-5226.
DOI: 10.1002/adma.201090156
Google Scholar
[14]
D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources. 196 (2011) 4873-4885.
DOI: 10.1016/j.jpowsour.2011.02.022
Google Scholar
[15]
M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4 (2011) 668-674.
DOI: 10.1039/c0ee00295j
Google Scholar
[16]
H.P. Cong, J.F. Chen, S.H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system, Chem. Soc. Rev. 43 (2014) 7295-7325.
DOI: 10.1039/c4cs00181h
Google Scholar
[17]
M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim, J.H. Lee, Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries, Nanoscale. 7 (2015) 4820-4868.
DOI: 10.1039/c4nr07068b
Google Scholar
[18]
A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite, Nanoscale. 7 (2015) 6944-6956.
DOI: 10.1039/c4nr06942k
Google Scholar
[19]
M. Zhao, X.Y. Guo, O. Ambacher, C.E. Nebel, R. Hoffmann, Electrochemical generation of hydrogenated graphene flakes, Carbon. 83 (2015) 128-135.
DOI: 10.1016/j.carbon.2014.11.033
Google Scholar
[20]
H.J. Yan, JW. Bai, B. Wang, L. Yu, L. Zhao, J. Wang, Q. Liu, J.Y. Liu, Z.S. Li, Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors, Electrochim. Acta. 154 (2015) 9-16.
DOI: 10.1016/j.electacta.2014.12.029
Google Scholar
[21]
J. Niu, S. Zhang, Y. Niu, H.H. Song, X.H. Chen, J.S. Zhou, B. Cao, Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@ graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem. A, 3 (2015).
DOI: 10.1039/c5ta05386b
Google Scholar
[22]
J. Zhao, H. Yu, Z.S. Liu, M. Ji, L.Q. Zhang, G.W. Sun, Supercritical deposition route of preparing Pt/Graphene composites and their catalytic performance toward methanol electrooxidation, J. Phys. Chem. C. 118 (2014) 1182-1190.
DOI: 10.1021/jp402620p
Google Scholar
[23]
Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science. 332 (2011).
DOI: 10.1126/science.1200770
Google Scholar
[24]
P.K. Srivastava, S. Ghosh, Defect engineering as a versatile route to estimate various scattering mechanisms in monolayer graphene on solid substrates, Nanoscale. 7 (2015) 16079-16086.
DOI: 10.1039/c5nr04293c
Google Scholar
[25]
J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725.
DOI: 10.1039/c2jm34066f
Google Scholar
[26]
O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon. 50 (2012) 3015-3025.
DOI: 10.1016/j.carbon.2012.02.087
Google Scholar
[27]
J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, X.B. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties, Nano Energy. 2 (2013) 49-56.
DOI: 10.1016/j.nanoen.2012.07.010
Google Scholar
[28]
G.C. Huang, T. Chen, Z. Wang, K. Chang, W.X. Chen, Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery, J. Power Sources. 235 (2013) 122-128.
DOI: 10.1016/j.jpowsour.2013.01.093
Google Scholar
[29]
J.X. Guo, Y.F. Sun, X. Zhang, L. Tang, H.T. Liu, FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation, J. Alloy. Compd. 604 (2014) 286-291.
DOI: 10.1016/j.jallcom.2014.03.077
Google Scholar
[30]
S.Y. Zheng, Y. Wen, Y.J. Zhu, Z. Han, J. Wang, J.H. Yang, C.S. Wang, In Situ Sulfur Reduction and Intercalation of Graphite Oxides for Li-S Battery Cathodes, Adv. Energy Mater. 4 (2014) 1400482.
DOI: 10.1002/aenm.201400482
Google Scholar
[31]
S. Niu, W. Lv, C. Zhang, Y. Shi, J. Zhao, B. Li, Q.H. Yang, F. Kang, One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries, J. Power Sources. 295 (2015).
DOI: 10.1016/j.jpowsour.2015.06.122
Google Scholar
[32]
C. Zhang, W. Lv, W.G. Zhang, X.Y. Zheng, M.B. Wu, W. Wei, Y. Tao, Z.J. Li, Q.H. Yang, Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries, Adv. Energy Mater. 4 (2014).
DOI: 10.1002/aenm.201301565
Google Scholar
[33]
J. Yang, M.Z. Ma, L.Q. Li, Y.F. Zhang, W. Huang, X.C. Dong, Graphene nanomesh: new versatile materials, Nanoscale. 6 (2014) 13301-13313.
DOI: 10.1039/c4nr04584j
Google Scholar
[34]
S.H. Park, Y.W. Choi, C.S. Kim, S.B. Park, Improved interfacial adhesion of membrane electrode assemblies using polymer binders and pore-filling membranes in alkaline membrane fuel cells, J. Solid State Electr. 17 (2013) 1247-1254.
DOI: 10.1007/s10008-012-1994-y
Google Scholar
[35]
K. Ding, Y.K. Bu, Q. Liu, T.F. Li, K. Meng, Y.B. Wang, Ternary-layered nitrogen-doped graphene/sulfur/ polyaniline nanoarchitecture for the high-performance of lithium-sulfur batteries, J. Mater. Chem. A. 3 (2015) 8022-8027.
DOI: 10.1039/c5ta01195g
Google Scholar
[36]
T.Z. Yang, T. Qian, M.F. Wang, J. Liu, J.Q. Zhou, Z.Z. Sun, M.Z. Chen, C.L. Yan, A new approach towards the synthesis of nitrogen-doped graphene/MnO2 hybrids for ultralong cycle-life lithium ion batteries, J. Mater. Chem. A. 3 (2015) 6291-6296.
DOI: 10.1039/c4ta07208a
Google Scholar
[37]
M. Sevim, T. Sener, O. Metin, Monodisperse MPd (M: Co, Ni, Cu) alloy nanoparticles supported on reduced graphene oxide as cathode catalysts for the lithium-air battery, Int. J. Hydrogen Energy. 40 (2015) 10876-10882.
DOI: 10.1016/j.ijhydene.2015.07.036
Google Scholar
[38]
G.F. Gu, J.L. Cheng, X.D. Li, W. Ni, Q. Guan, G.X. Qu, B. Wang, Facile synthesis of graphene supported ultralong TiO2 nanofibers from the commercial titania for high performance lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 6642-6648.
DOI: 10.1039/c5ta00523j
Google Scholar