Chemical Modification Graphene as a High Performance Anode Material for Lithium-Ion Batteries

Article Preview

Abstract:

A novel membrane electrode was fabricated by coating conductive slurry (K/Graphene composites as its important component) on copper foil. The membrane electrode, as anode of lithium ion battery, exhibited excellent columbic efficiency and specific capacity of 831 mAh g-1 after 1000 cycles. The K/Graphene composites presented a multi-layer nanostructure. It provided not only more intercalation space and intercalation sites for Li+ during the Li+ intercalation/extraction, but also alleviated the agglomeration of dispersed nanocrystals, as well as decreased the electrochemical impedance. The results suggest that the membrane electrode holds great potential as an anode material for LIBs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

779-785

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.A. Vargas, A. Caballero, J. Morales, Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?, Nanoscale. 4 (2012) 2083-(2092).

DOI: 10.1039/c2nr11936f

Google Scholar

[2] H. Shintani, K. Kakinuma, H. Uchida, M. Watanabe, M. Uchida, Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer, J. Power Sources. 280 (2015).

DOI: 10.1016/j.jpowsour.2015.01.132

Google Scholar

[3] J. Liu, S.Z. Qiao, J.S. Chen, X.W. Lou, X.R. Xing, G.Q. Lu. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chem. Commun. 47 (2011) 12578-12591.

DOI: 10.1039/c1cc13658e

Google Scholar

[4] Z.U. Yu, L. Tetard, L. Zhai, J. Thomas. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8 (2015) 702-730.

DOI: 10.1039/c4ee03229b

Google Scholar

[5] M.D. Bhatt, C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes, Phys. Chem. Chem. Phys. 17 (2015) 4799-4844.

DOI: 10.1039/c4cp05552g

Google Scholar

[6] N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Adv. Mater. 21 (2009) 2664-2680.

DOI: 10.1002/adma.200901079

Google Scholar

[7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carb on films, Science, 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[8] R.J. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J.Z. Chen, G.Q. Tan, Y.S. Ye, K. Amine, Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries, Nano Lett. 13 (2013) 4642-4649.

DOI: 10.1021/nl4016683

Google Scholar

[9] C.Y. Fan, H.H. Li, L.L. Zhang, H.Z. Sun, X.L. Wu, H.M. Xie, J.P. Zhang. Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium-sulfur batteries, Phys. Chem. Chem. Phys. 17 (2015).

DOI: 10.1039/c5cp02531a

Google Scholar

[10] M.L. Mao, L. Jiang, L.C. Wu, M. Zhang, T.H. Wang, The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 13384-13389.

DOI: 10.1039/c5ta01501d

Google Scholar

[11] J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries, Adv. Mater. 25 (2013) 4673-4677.

DOI: 10.1002/adma.201301530

Google Scholar

[12] G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A.C. Ferrari, A.K. Geim, K.S. Novoselov, C. Galiotis, Subjecting a graphene monolayer to tension and compression, Small. 5 (2009) 2397-2402.

DOI: 10.1002/smll.200900802

Google Scholar

[13] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 5226-5226.

DOI: 10.1002/adma.201090156

Google Scholar

[14] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources. 196 (2011) 4873-4885.

DOI: 10.1016/j.jpowsour.2011.02.022

Google Scholar

[15] M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4 (2011) 668-674.

DOI: 10.1039/c0ee00295j

Google Scholar

[16] H.P. Cong, J.F. Chen, S.H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system, Chem. Soc. Rev. 43 (2014) 7295-7325.

DOI: 10.1039/c4cs00181h

Google Scholar

[17] M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim, J.H. Lee, Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries, Nanoscale. 7 (2015) 4820-4868.

DOI: 10.1039/c4nr07068b

Google Scholar

[18] A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite, Nanoscale. 7 (2015) 6944-6956.

DOI: 10.1039/c4nr06942k

Google Scholar

[19] M. Zhao, X.Y. Guo, O. Ambacher, C.E. Nebel, R. Hoffmann, Electrochemical generation of hydrogenated graphene flakes, Carbon. 83 (2015) 128-135.

DOI: 10.1016/j.carbon.2014.11.033

Google Scholar

[20] H.J. Yan, JW. Bai, B. Wang, L. Yu, L. Zhao, J. Wang, Q. Liu, J.Y. Liu, Z.S. Li, Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors, Electrochim. Acta. 154 (2015) 9-16.

DOI: 10.1016/j.electacta.2014.12.029

Google Scholar

[21] J. Niu, S. Zhang, Y. Niu, H.H. Song, X.H. Chen, J.S. Zhou, B. Cao, Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@ graphene nanosheets as high performance lithium-ion battery anodes, J. Mater. Chem. A, 3 (2015).

DOI: 10.1039/c5ta05386b

Google Scholar

[22] J. Zhao, H. Yu, Z.S. Liu, M. Ji, L.Q. Zhang, G.W. Sun, Supercritical deposition route of preparing Pt/Graphene composites and their catalytic performance toward methanol electrooxidation, J. Phys. Chem. C. 118 (2014) 1182-1190.

DOI: 10.1021/jp402620p

Google Scholar

[23] Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science. 332 (2011).

DOI: 10.1126/science.1200770

Google Scholar

[24] P.K. Srivastava, S. Ghosh, Defect engineering as a versatile route to estimate various scattering mechanisms in monolayer graphene on solid substrates, Nanoscale. 7 (2015) 16079-16086.

DOI: 10.1039/c5nr04293c

Google Scholar

[25] J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725.

DOI: 10.1039/c2jm34066f

Google Scholar

[26] O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon. 50 (2012) 3015-3025.

DOI: 10.1016/j.carbon.2012.02.087

Google Scholar

[27] J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, X.B. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties, Nano Energy. 2 (2013) 49-56.

DOI: 10.1016/j.nanoen.2012.07.010

Google Scholar

[28] G.C. Huang, T. Chen, Z. Wang, K. Chang, W.X. Chen, Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery, J. Power Sources. 235 (2013) 122-128.

DOI: 10.1016/j.jpowsour.2013.01.093

Google Scholar

[29] J.X. Guo, Y.F. Sun, X. Zhang, L. Tang, H.T. Liu, FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation, J. Alloy. Compd. 604 (2014) 286-291.

DOI: 10.1016/j.jallcom.2014.03.077

Google Scholar

[30] S.Y. Zheng, Y. Wen, Y.J. Zhu, Z. Han, J. Wang, J.H. Yang, C.S. Wang, In Situ Sulfur Reduction and Intercalation of Graphite Oxides for Li-S Battery Cathodes, Adv. Energy Mater. 4 (2014) 1400482.

DOI: 10.1002/aenm.201400482

Google Scholar

[31] S. Niu, W. Lv, C. Zhang, Y. Shi, J. Zhao, B. Li, Q.H. Yang, F. Kang, One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries, J. Power Sources. 295 (2015).

DOI: 10.1016/j.jpowsour.2015.06.122

Google Scholar

[32] C. Zhang, W. Lv, W.G. Zhang, X.Y. Zheng, M.B. Wu, W. Wei, Y. Tao, Z.J. Li, Q.H. Yang, Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries, Adv. Energy Mater. 4 (2014).

DOI: 10.1002/aenm.201301565

Google Scholar

[33] J. Yang, M.Z. Ma, L.Q. Li, Y.F. Zhang, W. Huang, X.C. Dong, Graphene nanomesh: new versatile materials, Nanoscale. 6 (2014) 13301-13313.

DOI: 10.1039/c4nr04584j

Google Scholar

[34] S.H. Park, Y.W. Choi, C.S. Kim, S.B. Park, Improved interfacial adhesion of membrane electrode assemblies using polymer binders and pore-filling membranes in alkaline membrane fuel cells, J. Solid State Electr. 17 (2013) 1247-1254.

DOI: 10.1007/s10008-012-1994-y

Google Scholar

[35] K. Ding, Y.K. Bu, Q. Liu, T.F. Li, K. Meng, Y.B. Wang, Ternary-layered nitrogen-doped graphene/sulfur/ polyaniline nanoarchitecture for the high-performance of lithium-sulfur batteries, J. Mater. Chem. A. 3 (2015) 8022-8027.

DOI: 10.1039/c5ta01195g

Google Scholar

[36] T.Z. Yang, T. Qian, M.F. Wang, J. Liu, J.Q. Zhou, Z.Z. Sun, M.Z. Chen, C.L. Yan, A new approach towards the synthesis of nitrogen-doped graphene/MnO2 hybrids for ultralong cycle-life lithium ion batteries, J. Mater. Chem. A. 3 (2015) 6291-6296.

DOI: 10.1039/c4ta07208a

Google Scholar

[37] M. Sevim, T. Sener, O. Metin, Monodisperse MPd (M: Co, Ni, Cu) alloy nanoparticles supported on reduced graphene oxide as cathode catalysts for the lithium-air battery, Int. J. Hydrogen Energy. 40 (2015) 10876-10882.

DOI: 10.1016/j.ijhydene.2015.07.036

Google Scholar

[38] G.F. Gu, J.L. Cheng, X.D. Li, W. Ni, Q. Guan, G.X. Qu, B. Wang, Facile synthesis of graphene supported ultralong TiO2 nanofibers from the commercial titania for high performance lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 6642-6648.

DOI: 10.1039/c5ta00523j

Google Scholar