Enhanced Thermoelectric Properties of BiCuSeO Ceramics by Bi Vacancies

Article Preview

Abstract:

Polycrystalline Bi1-xCuSeO (0 ≤ x ≤ 0.05) ceramics were prepared by self-propagating high-temperature synthesis followed by spark plasma sintering method. All the samples correspond with single BiCuSeO phase and high vacancies sample had higher density. The highest power factor of 4.71×10-4 W.m-1.K-2 was obtained by 5% Bi vacancies at 873K, which is about 32% higher than that of the pristine sample. Along with slight reduction of thermal conductivity, the maximum ZT reached 0.68. The results show that vacancy engineering is a promising method for thermoelectric applications of BiCuSeO and related ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

803-810

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. J. Snyder, Eric. S. Toberer, Complex thermoelectric materials, Nature. Mater. 7 (2008) 105-114.

Google Scholar

[2] L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321 (2008) 1457-1461.

DOI: 10.1126/science.1158899

Google Scholar

[3] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature. 489 (2012) 414-418.

DOI: 10.1038/nature11439

Google Scholar

[4] T. M. Tritt, Holey and unholey semiconductors, Science. 283 (1999) 804-805.

DOI: 10.1126/science.283.5403.804

Google Scholar

[5] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature. 508 (2014) 373-377.

DOI: 10.1038/nature13184

Google Scholar

[6] L. D. Zhao, J. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan, N. Dragoe, Energy Environ. Sci. 7 (2014) 2900-2924.

DOI: 10.1039/c4ee00997e

Google Scholar

[7] G. K. Ren, J. L. Lan, K. J. Ventura, Y. H. Lin, C. W. Nan, RSC. Adv. 85 (2015) 69878-69885.

DOI: 10.1039/c5ra13191j

Google Scholar

[8] J. H. Sui, J. Li, J. Q. He, Y. L. Pei, D. Berardand, H. J. Wu, N. Dragoe, W. Cai, L. D. Zhao, Energy Environ. Sci. 6 (2013) 2916-2920.

Google Scholar

[9] Y. Liu, L. D. Zhao, Y. C. Liu, J. L. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardand, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, H. M. Zhu, J. Am. Chem. Soc. 133 (2011) 20112-20115.

DOI: 10.1021/ja2091195

Google Scholar

[10] Y. C. Liu, Y. M. Zhou, J. L. Lan, C. C. Zeng, Y. H. Zheng, B. Zhan, B. P. Zhang, Y. H. Lin, C. W. Nan, J. Alloys Compd. 662 (2016): 320-324.

Google Scholar

[11] G. K. Ren, S. Y. Wang, Y. C. Zhu, K. J. Ventura, X. Tan, W. Xu, Y. H. Lin, J. H. Yang, C. W. Nan, Energy Environ. Sci. 10 (2017) 1590-1599.

Google Scholar

[12] J. Li, J. H. Sui, C. Barreteau, D. Berardand, N. Dragoe, W. Cai, Y. L. Pei, L. D. Zhao, J. Alloys Compd. 551 (2013) 649-653.

DOI: 10.1016/j.jallcom.2012.10.160

Google Scholar

[13] Y. L. Pei, J. Q. He, J. F. Li, F. Li, Q. J. Liu, W. Pan, C. Barreteau, D. Berardand, N. Dragoe, L. D. Zhao, , NPG Asia Materials. 5 (2013) e47.

DOI: 10.1038/am.2013.15

Google Scholar

[14] L. D. Zhao, D. Berardand, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, N. Dragoe, Appl. Phys. Lett. 97. 9 (2010) 092118.

DOI: 10.1063/1.3485050

Google Scholar

[15] J. Li, J. H. Sui, Y. L. Pei, C. Barreteau, D. Berardand, N. Dragoe, J. Q. He, L. D. Zhao, Energy Environ. Sci. 5 (2012) 8543-8547.

Google Scholar

[16] J. L. Lan, Y. C. Liu, B. Zhan, Y. H. Lin, B. P. Zhang, X. Yuan, W. Q. Zhang, W. Xu, C. W. Nan, Adv. Mater. 25 (2013) 5086-5090.

DOI: 10.1002/adma.201301675

Google Scholar

[17] J. L. Lan, C. J. Deng, W. Q. Ma, G. K. Ren, Y. H. Lin. J, X. P. Yang, Alloys Compd. 708 (2017) 955-960.

Google Scholar

[18] D. S. Lee, T. H. An, M. Jeong, H. S. Choi, Y. S. Lim, W. S. Seo, C. H. Park, C. Park, H. H. Park, Appl. Phys. Lett. 103 (2013) 232110.

Google Scholar

[19] Y. C. Liu, Y. H. Zheng, B. Zhan, K. Chen, S. Butt, B. P. Zhang, Y. H. Lin, J. Eur. Ceram. Soc. 35 (2015) 845-849.

Google Scholar

[20] Z. Li, C. Xiao, S. J. Fan, Y. Deng, W. S. Zhang, B. J. Ye, Y. Xie, J. Am. Chem. Soc. 137 (2015) 6587-6593.

Google Scholar

[21] S. Das, R. Chetty, K. Wojciechowski, S. Susas, R. C. Mallik, Appl. Surf. Sci. 418 (2016) 238-245.

Google Scholar

[22] X. L. Su, F. Fu, Y. G. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. W. Yang, H. Chi, X. F Tang, Q. J. Zhang, Nat. Commun. 5 (2014).

Google Scholar

[23] T. Liang, X. L. Su, Y. G. Yan, G. Zheng, Q. Zhang, H. Chi, X. F. Tang, C. Uher, J. Mater. Chem. A. 2 (2014) 17914-17918.

DOI: 10.1039/c4ta02780a

Google Scholar

[24] G. Zheng, X. L. Su, T. Liang, Q. B. Lu, Y. G. Yan C. Uher, X. F. Tang, J. Mater. Chem. A. 3 (2015) 6603-6613.

Google Scholar

[25] M. Saleemi, M. Y. Tafti, A. Jacquot, M. Jagle, M. Johnsson, M. S. Toprak, Inorg. Chem. 55 (2016) 1831-1836.

DOI: 10.1021/acs.inorgchem.5b02658

Google Scholar

[26] B. Cheng, Y. H. Lin, J. L. Lan, Y. Liu, C. W. Nan, J. Mater. Sci. Technol. 27 (2011) 1165-1168.

Google Scholar

[27] B. Zhan, Y. Y. Liu, X. Tan, J. L. Lan, Y. Y. Lin, C. W. Nan, J. Am. Ceram. Soc. Society. 98 (2015) 2465-2469.

Google Scholar

[28] J. Bosman, H. J. Vandll, Small-polaron versus band conduction in some transition-metal oxides, Adv. Phys 19 (1970) 1-117.

DOI: 10.1080/00018737000101071

Google Scholar