[1]
A. Fotouhi, D.J. Auger, K. Propp, A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur, Renewable and Sustainable Energy Reviews. 56 (2016) 1008-1021.
DOI: 10.1016/j.rser.2015.12.009
Google Scholar
[2]
J. Warner, Chapter 7 • Lithium-Ion Battery Packs for Evs. Lithium-Ion Batteries: Advances and Applications, 2014, pp.127-150.
DOI: 10.1016/b978-0-444-59513-3.00007-8
Google Scholar
[3]
H. Horie, EVs and HEVs: The Need and Potential Functions of Batteries for Future Systems. Lithium-Ion Batteries: Advances and Applications, 2014, pp.83-95.
DOI: 10.1016/b978-0-444-59513-3.00005-4
Google Scholar
[4]
X.J. Bai, Y.Y. Yu, H.H. Kung, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery, Journal of Power Sources. 306 (2016) 42-48.
DOI: 10.1016/j.jpowsour.2015.11.102
Google Scholar
[5]
K. Feng, W. Ahn, G. Lui, Nano Energy. 19 (2016) 187-197.
Google Scholar
[6]
X.F. Chen, Y. Huang, J.J. Chen, Preparation of graphene supported porous Si@C ternary composites and their electrochemical performance as high capacity anode materials for Li-ion batteries, Ceramics International. 41 (2015) 8533-8540.
DOI: 10.1016/j.ceramint.2015.03.060
Google Scholar
[7]
J. Lee, K. Hasegawa, T. Momma, One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries, Journal of Power Sources. 286 (2015) 540-550.
DOI: 10.1016/j.jpowsour.2015.04.024
Google Scholar
[8]
X. Wang, M.Q. Jia, Preparation of Si−Cu Composite with Electroless Copper Plating and Its Application in Lithium-ion Battery, The Chinese Journal of Process Engineering. 11 (2011) 689-694.
Google Scholar
[9]
Q. Zhang, J. Liu, Z.Y. Wu, 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery, Journal of Alloys and Compounds. 657 (2016) 559-564.
DOI: 10.1016/j.jallcom.2015.10.123
Google Scholar
[10]
S.J. Hao, C.L. Li, K. Zhu, The preparation of high performance porous silicon powders by etching Al-Si alloy in acid solution for lithium ion battery, Journal of electrochemistry. 20 (2014) 1-4.
DOI: 10.1016/j.electacta.2013.08.123
Google Scholar
[11]
Y.H. Liu, Z.X. Wu, C. Ji, Preparation and research on Si-Ni anode material of lithium ion battery, Energy conservation. 4 (2014) 44-47.
Google Scholar
[12]
J. Yang, J.J. Tang, S.J. Lou, Preparation and performance of Si-Fe composite materials for lithium ion batteries, Journal of Central South University (Science and Technology). 42 (2011) 859-864.
Google Scholar
[13]
X.H. Hou, S.J. Hu, W.S. Li, First-principles study of interphase Ni_3Sn in Sn-Ni alloy for anode of lithium ion battery, Chinese Physics B. 17 (2008) 3422-3427.
DOI: 10.1088/1674-1056/17/9/046
Google Scholar
[14]
M.D. Segall, P.J.D. Lindan, M.J. Probert, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter. 14 ( 2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[15]
W.J. Zhao, X.L. Lei, Y.L. Yan, Ground-state structures and stabilities of Zr_n(n=2-16) clusters studied with density-functional theory, Acta Phys. Sin. 56 (2007) 5209-5215.
Google Scholar
[16]
J.P. Perdew, J.A. Chevary, S.H. Vosko, Atoms, Molecules, Solids, and Surfaces-Applications of the generalized gradient approximation for exchange and correlation, Phys Rev B. 46 (1992) 6671-6687.
DOI: 10.1103/physrevb.46.6671
Google Scholar
[17]
D. Vanderbilt D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys Rev B. 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[18]
Z.W. Huang, S.J. Hu, X.H. Hou, Dead lithium phase investigation of Sn-Zn alloy as anode materials for lithium ion battery, Chinese Science Bulletin. 54 (2009) 1003-1008.
DOI: 10.1007/s11434-009-0126-2
Google Scholar
[19]
X.H. Hou, S.J. Hu, Q. Ru, The Roles of Intermediate Phases of Li-Si Alloy as Anode Materials for Lithium-Ion Batteries, Rare Metal Materials and Engineering. 39 (2010) 2079-(2083).
DOI: 10.1016/s1875-5372(11)60003-9
Google Scholar
[20]
X.L. Guan, C.K. Huang, D.S. Zheng, Acta Metallurgica Sinica. 42 (2006) 123-128.
Google Scholar
[21]
C. Zhang, Z. Zhang, P. Wang, First-principles study of electronic structure of V2AlC and V2AlN, Solid State Communications. 144 (2007) 347–351.
Google Scholar
[22]
L. Yu, S.K. Lu, Y.L. Jiang, First-principles calculation of structural and electronic properties of Ti-doped B13C2, Procedia Engineering. 12 (2011) 204-209.
DOI: 10.1016/j.proeng.2011.05.032
Google Scholar