[1]
F.J. Disalvo Thermoelectric cooling and power generation. Science. 285 (1999) 703-706.
DOI: 10.1126/science.285.5428.703
Google Scholar
[2]
L.E. Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321 (2008) 1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[3]
Y. Pei, X. Shi, A. Lalonde et al. Convergence of electronic bands for high performance bulk thermoelectrics, Natural. 473 (2011) 66-69.
DOI: 10.1038/nature09996
Google Scholar
[4]
K. Biswas, J. He, I.D. Blum et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures, Natural. 489 (2012) 414-418.
DOI: 10.1038/nature11439
Google Scholar
[5]
J.P. Heremans, M.S. Dresselhaus, L.E. Bell et al. When thermoelectrics reached the nanoscale, Nat. Nano Technol. 8 (2013) 471-473.
DOI: 10.1038/nnano.2013.129
Google Scholar
[6]
G. Marcano, C. Rincon, L.M. Chalbaud et al. Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3, J. Appl. Phys. 90 (2001) 1847-1853.
DOI: 10.1063/1.1383984
Google Scholar
[7]
S.G. Choi, J. Kang, J. Li et al. Optical function spectra and bandgap energy of Cu2SnSe3, Appl. Phys. Lett. 106 (2015) K93-45.
Google Scholar
[8]
G. Marcano G, L.D. Chalbaud, C. Rincon et al. Crystal growth and structure of the semiconductor Cu2SnSe3, Mater. Lett. 53 (2002) 151-154.
DOI: 10.1016/s0167-577x(01)00466-9
Google Scholar
[9]
G.E. Delgado, A.J. Mora, G. Marcano et al. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data, Mater. Res. Bull. 38 (2003) 1949-(1955).
DOI: 10.1016/j.materresbull.2003.09.017
Google Scholar
[10]
K.D. Gulay, M. Daszkiewicz, T.A. Ostapyuk et al. Monoclinic Cu2Se3Sn. Acta Crystallogr. 66 (2010) 58-60.
Google Scholar
[11]
X. Lu, D.T. Morelli. Thermoelectric Properties of Mn-Doped Cu2SnSe3. J. Electron. Mater. 41 (2012) 1554-1558.
Google Scholar
[12]
E.J. Skoug, J.D. Cain, D.T. Morelli. Improved Thermoelectric Performance in Cu-Based Ternary Chalcogenides Using S for Se Substitution. J. Electron. Mater. 41 (2012) 1232-1236.
DOI: 10.1007/s11664-012-1969-x
Google Scholar
[13]
C. Raju, M. Falmbigl, P. Rogl et al. Thermoelectric properties of Zn doped Cu2SnSe3. Mater. Chem. Phys. 147 (2014) 1022-1028.
DOI: 10.1016/j.matchemphys.2014.06.054
Google Scholar
[14]
X. Shi, L. Xi, J. Fan et al. Cu−Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure. Chem. Mater. 22 (2010) 6029-6031.
DOI: 10.1021/cm101589c
Google Scholar
[15]
E.J. Skoug, J.D. Cain, D.T. Morelli. Thermoelectric properties of the Cu2SnSe3–Cu2GeSe3, solid solution. J. Alloys Compd. 506 (2010) 18-21.
DOI: 10.1016/j.jallcom.2010.06.182
Google Scholar
[16]
G.H. Chandra, O.L. Kumar, R.P. Rao, et al. Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films. J. Mater. Sci. 21 (2011) 6952-6959.
DOI: 10.1007/s10853-011-5661-y
Google Scholar
[17]
H. Chen, C. Yang, H. Liu et al. Thermoelectric properties of CuInTe2/graphene composites. Cryst. Eng. Comm. 15 (2013) 6648-6651.
Google Scholar
[18]
D. Zhao, M. Zuo, J. Leng et al. Synthesis and thermoelectric properties of CoSb3/WO3, thermoelectric composites. Intermetallics. 40 (2013) 71-75.
DOI: 10.1016/j.intermet.2013.04.011
Google Scholar