[1]
Zou J P, Zhang L Z, Luo S L, et al. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading, J. International Journal of Hydrogen Energy, 37(22) (2012).
DOI: 10.1016/j.ijhydene.2012.08.133
Google Scholar
[2]
Antony R P, Mathews T, Ramesh C, et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization, J. International Journal of Hydrogen Energy, 37(10) (2012) 8268-8276.
DOI: 10.1016/j.ijhydene.2012.02.089
Google Scholar
[3]
Spiccia L, Bonke S, Wiechen M, et al. Renewable fuels from concentrated solar power: Towards practical artificial photosynthesis, J. Energy & Environmental Science, 8(9) (2015) 2791-2796.
DOI: 10.1039/c5ee02214b
Google Scholar
[4]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode, J. Nature, 238(5358) (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[5]
Moya A, Cherevan A, Marchesan S, et al. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids, J. Applied Catalysis B Environmental, 179 (2015) 574-582.
DOI: 10.1016/j.apcatb.2015.05.052
Google Scholar
[6]
Tsui L K, Zangari G. Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy, J. Electrochimica Acta, 121(3) (2014) 203-209.
DOI: 10.1016/j.electacta.2013.12.163
Google Scholar
[7]
Zheng X J, Wei L F, Zhang Z H, et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation, J. International Journal of Hydrogen Energy, 34(22) (2009) 9033-9041.
DOI: 10.1016/j.ijhydene.2009.09.019
Google Scholar
[8]
Momeni M M, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light, J. Journal of Electroanalytical Chemistry, 739 (2015).
DOI: 10.1016/j.jelechem.2014.12.030
Google Scholar
[9]
Ibadurrohman M, Hellgardt K. Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger, J. International Journal of Hydrogen Energy, 39(32) (2014) 18204-18215.
DOI: 10.1016/j.ijhydene.2014.08.142
Google Scholar
[10]
Li F, Liu W, Lai Y, et al. Nitrogen and sulfur co-doped hollow carbon nanofibers decorated with sulfur doped anatase TiO2 with superior sodium and lithium storage properties, J. Journal of Alloys & Compounds, 695 (2017) 1743-1752.
DOI: 10.1016/j.jallcom.2016.11.004
Google Scholar
[11]
Simsek E B. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation, J. Applied Catalysis B Environmental, 200 (2017) 309-322.
DOI: 10.1016/j.apcatb.2016.07.016
Google Scholar
[12]
Hu S, Li F, Fan Z, et al. Improved photocatalytic hydrogen production property over Ni/NiO/N-TiO2-x heterojunction nanocomposite prepared by NH3 plasma treatment, J. Journal of Power Sources, 250(9) (2014) 30-39.
DOI: 10.1016/j.jpowsour.2013.10.132
Google Scholar
[13]
Pei F, Liu Y, Xu S, et al. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution, J. International Journal of Hydrogen Energy, 38(6) (2013) 2670-2677.
DOI: 10.1016/j.ijhydene.2012.12.045
Google Scholar
[14]
Pei F, Xu S, Wei Z, et al. Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite, J. International Journal of Hydrogen Energy, 39(13) (2014) 6845-6852.
DOI: 10.1016/j.ijhydene.2014.02.173
Google Scholar
[15]
Gao L, Li Y, Ren J, et al. Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting, J. Applied Catalysis B Environmental, 202 (2017) 127-133.
DOI: 10.1016/j.apcatb.2016.09.018
Google Scholar
[16]
Khairy M, Zakaria W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes, J. Egyptian Journal of Petroleum, 23(4) (2014) 419-426.
DOI: 10.1016/j.ejpe.2014.09.010
Google Scholar
[17]
Rosseler O, Shankar M V, Du K L, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion, J. Journal of Catalysis, 269(1) (2010) 179-190.
DOI: 10.1016/j.jcat.2009.11.006
Google Scholar
[18]
Vasilaki E, Georgaki I, Vernardou D, et al. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity, J. Applied Surface Science, 353 (2015) 865-872.
DOI: 10.1016/j.apsusc.2015.07.056
Google Scholar
[19]
Raghavan N, Thangavel S, Venugopal G. Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites, J. Materials Science in Semiconductor Processing, 30 (2015) 321-329.
DOI: 10.1016/j.mssp.2014.09.019
Google Scholar
[20]
Wang B, Sun Q, Liu S, et al. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting, J. International Journal of Hydrogen Energy, 38(18) (2013) 7232-7240.
DOI: 10.1016/j.ijhydene.2013.04.038
Google Scholar
[21]
Yun E T, Yoo H Y, Kim W, et al. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals, J. Applied Catalysis B Environmental, 203 (2017).
DOI: 10.1016/j.apcatb.2016.10.029
Google Scholar
[22]
Alamelu K., V. Raja, L. Shiamala, et al. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes, J. Applied Surface Science, doi.org/10.1016/j.apsusc.2017.05.054.
DOI: 10.1016/j.apsusc.2017.05.054
Google Scholar
[23]
Dubey P K, Tiwari R S, Tripathi P, et al. Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production, J. International Journal of Hydrogen Energy, 39(29) (2014) 16282-16292.
DOI: 10.1016/j.ijhydene.2014.03.104
Google Scholar
[24]
El-Deen A G, Choi J H, Kim C S, et al. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, J. Desalination, 361(1) (2015) 53-64.
DOI: 10.1016/j.desal.2015.01.033
Google Scholar
[25]
Ana Jankovi, Sanja Erakovi, Maja Vukainovi-Sekuli, et al. Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications, J. Progress in Organic Coatings, 83 (2015) 1-10.
DOI: 10.1016/j.porgcoat.2015.01.019
Google Scholar
[26]
Hui L, Cui X. A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution, J. International Journal of Hydrogen Energy, 39(35) (2014) 19877-19886.
DOI: 10.1016/j.ijhydene.2014.10.010
Google Scholar
[27]
Huang B S, Tseng H H, Su E C, et al. Characterization and photoactivity of Pt/N-doped TiO2 synthesized through a sol-gel process at room temperature, J. Journal of Nanoparticle Research, 17(7) (2015) 1-10.
DOI: 10.1007/s11051-015-3091-5
Google Scholar
[28]
Ahmad H, Kamarudin S K, Minggu L J, et al. Hydrogen from photo-catalytic water splitting process: A review, J. Renewable & Sustainable Energy Reviews, 43 (2015) 599-610.
DOI: 10.1016/j.rser.2014.10.101
Google Scholar
[29]
Ismail A A, Bahnemann D W. Photochemical splitting of water for hydrogen production by photocatalysis: A review, J. Solar Energy Materials & Solar Cells, 128(128) (2014) 85-101.
DOI: 10.1016/j.solmat.2014.04.037
Google Scholar
[30]
Sun Y, Yan K P. Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell, J. International Journal of Hydrogen Energy, 39(22) (2014) 11368-11375.
DOI: 10.1016/j.ijhydene.2014.05.115
Google Scholar
[31]
Xue Y, Sun Y, Wang G, et al. Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays, J. Electrochimica Acta, 155 (2015) 312-320.
DOI: 10.1016/j.electacta.2014.12.134
Google Scholar
[32]
Zhang Z, Hossain M F, Takahashi T. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation, J. International Journal of Hydrogen Energy, 35(16) (2010) 8528-8535.
DOI: 10.1016/j.ijhydene.2010.03.032
Google Scholar
[33]
Li Y, Yu H, Zhang C, et al. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell, J. Electrochimica Acta, 107(10) (2013) 313-319.
DOI: 10.1016/j.electacta.2013.05.090
Google Scholar
[34]
Altomare M, Pozzi M, Allieta M, et al. H2 and O2 photocatalytic production on TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity, J. Applied Catalysis B Environmental, s 136-137(21) (2013) 81-88.
DOI: 10.1016/j.apcatb.2013.01.054
Google Scholar
[35]
Wang G, Wang H, Ling Y, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, J. Nano Letters, 11(7) (2011) 3026-33.
DOI: 10.1021/nl201766h
Google Scholar
[36]
Lai C W, Sreekantan S. Preparation of hybrid WO3-TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance, J. International Journal of Hydrogen Energy, 38(5) (2013) 2156-2166.
DOI: 10.1016/j.ijhydene.2012.12.025
Google Scholar
[37]
Baek S J, Hong W G, Min P, et al. Electrical conduction of palladium-decorated multi-layered graphene oxide effected by hydrogen dissociation, J. Synthetic Metals, 199 (2015) 74-78.
DOI: 10.1016/j.synthmet.2014.11.011
Google Scholar
[38]
Li H, Xia Z, Chen J, et al. Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity, J. Applied Catalysis B Environmental, s 168-169 (2015).
DOI: 10.1016/j.apcatb.2014.12.029
Google Scholar
[39]
Esfandiar A, Ghasemi S, Irajizad A, et al. The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing, J. International Journal of Hydrogen Energy, 37(20) (2012) 15423-15432.
DOI: 10.1016/j.ijhydene.2012.08.011
Google Scholar
[40]
Chen J, Su H, Liu Y, et al. Efficient photochemical hydrogen production under visible-light over artificial photosynthetic systems, J. International Journal of Hydrogen Energy, 38(21) (2013) 8639-8647.
DOI: 10.1016/j.ijhydene.2013.05.045
Google Scholar
[41]
Nishanthi S T, Sundarakannan B, Subramanian E, et al. Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique, J. Renewable Energy, 77 (2015) 300-307.
DOI: 10.1016/j.renene.2014.12.038
Google Scholar
[42]
Lai Y, Gong J, Lin C, et al. Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting, J. International Journal of Hydrogen Energy, 37 (2012) 6438-6446.
DOI: 10.1016/j.ijhydene.2012.01.078
Google Scholar
[43]
Sang L X, Zhang Z Y, Bai G M, et al. A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode, J. International Journal of Hydrogen Energy, 37(1) (2012) 854-859.
DOI: 10.1016/j.ijhydene.2011.04.040
Google Scholar