Effects of Zr Content on the Bending Property and Crystallization Behavior of Ductile Zr-Based Bulk Metallic Glasses

Article Preview

Abstract:

In this study, the effects of Zr content on the bending property, non–isothermal and isothermal crystallization kinetics of high–Zr–based BMGs were investigated. The BMGs exhibit high bending strength and their bending plasticity enhances with increasing Zr content, which is due to more free volume with high–Zr–content. During continuous heating, the crystallization phases for Zr66 and Zr70 BMGs are Zr2Cu and Zr2Ni phases. Zr70 alloy exhibits the highest activation energies for glass transition and crystallization because of the sluggish diffusion of large Zr atoms. Under isothermal condition, the average Avrami exponent of Zr66 alloy modeled by the JMA equation is about 2.6, implying a diffusion–controlled three dimensional crystallization growth with an increasing nucleation rate. The average Avrami exponent of 2.0 for Zr70 alloy indicates a diffusion–controlled three dimensional crystallization growth with a decreasing nucleation rate, which can be attributed to its higher activation energy for crystallization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

765-775

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R 44 (2004) 45–89.

Google Scholar

[2] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (2011) 2243–2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[3] J. Schroers, Bulk metallic glasses, Phys. Today 66 (2013) 32–37.

Google Scholar

[4] Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, J.Z. Jiang, Zr–(Cu, Ag)–Al bulk metallic glasses, Acta Mater. 56 (2008) 1785–1796.

DOI: 10.1016/j.actamat.2007.12.030

Google Scholar

[5] M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Prog. Mater. Sci. 55 (2010) 759-839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar

[6] Y. Liu, Y.M. Wang, H.F. Pang, Q. Zhao, L. Liu, A Ni–free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications, Acta Biomater. 9 (2013) 7043–7053.

DOI: 10.1016/j.actbio.2013.02.019

Google Scholar

[7] M.F. Ashby, A.L. Greer, Metallic glasses as structural materials, Scripta Mater. 54 (2006) 321-326.

DOI: 10.1016/j.scriptamat.2005.09.051

Google Scholar

[8] Y. Yokoyama, K. Fujita, A.R. Yavari, A. Inoue, Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature, Philos. Mag. Lett. 89 (2009) 322–334.

DOI: 10.1080/09500830902873575

Google Scholar

[9] N.B. Hua, R. Li, J.F. Wang, T. Zhang, Biocompatible Zr–Al–Fe bulk metallic glasses with large plasticity, Sci. China–Phys. Mech. Astron. 55 (2012) 1664–1669.

DOI: 10.1007/s11433-012-4831-5

Google Scholar

[10] X. Hui, S.N. Liu, S.J. Pang, L.C. Zhuo, T. Zhang, G.L. Chen, Z.K. Liu, High–zirconium–based bulk metallic glasses with large plasticity, Scripta Mater. 63 (2010) 239–242.

DOI: 10.1016/j.scriptamat.2010.03.065

Google Scholar

[11] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Super plastic bulk metallic glasses at room temperature, Science 315 (2007) 1385-8.

DOI: 10.1126/science.1136726

Google Scholar

[12] N.B. Hua, L. Huang, W.Z. Chen, W. He, T. Zhang, Biocompatible Ni-free Zr-based bulk metallic glasses with high–Zr–content: Compositional optimization for potential biomedical applications, Mater. Sci. Eng. C 44 (2014) 400–410.

DOI: 10.1016/j.msec.2014.08.049

Google Scholar

[13] U. Köster, J. Meinhsrdt, S. Roos, H. Liebertz, Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al Alloys, Appl. Phys. Lett. 69 (1996) 179–181.

DOI: 10.1063/1.117364

Google Scholar

[14] Y.H. Kim, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of Al88Y2Ni9M1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc–Al particles, Mater. Trans. JIM. 31 (1990) 747–749.

DOI: 10.2320/matertrans1989.31.747

Google Scholar

[15] J.F. Wang, R. Li, N.B. Hua, L. Huang, T. Zhang, Ternary Fe–P–C bulk metallic glass with good soft–magnetic and mechanical properties, Scripta Mater. 65 (2011) 536–539.

DOI: 10.1016/j.scriptamat.2011.06.020

Google Scholar

[16] A. Inoue, T. Zhang, M.W. Chen, T. Sakurai, J. Saida, M. Matsushita, Ductile quasicrystalline alloys, Appl. Phys. Lett. 76 (2000) 967–969.

DOI: 10.1063/1.125907

Google Scholar

[17] Y.X. Zhuang, T.F. Duan, H.Y. Shi, Calorimetric study of non–isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass, J. Alloys Compd. 509 (2011) 9019–9025.

DOI: 10.1016/j.jallcom.2011.06.112

Google Scholar

[18] W.K. An, A.H. Cai, J.H. Li, Y. Luo, T.L. Li, X. Xiong, Y. Liu, Y. Pan, Glass formation and non–isothermal crystallization of Zr62. 5Al12. 1Cu7. 95Ni17. 45 bulk metallic glass, J. Non–Cryst. Solids 355 (2009) 1703–1706.

DOI: 10.1016/j.jnoncrysol.2009.06.040

Google Scholar

[19] N.B. Hua, W. Z. Chen, X.L. Liu, F. Yue, Isochronal and isothermal crystallization kinetics of Zr–Al–Fe glassy alloys: Effect of high–Zr content, J. Non–Cryst. Solids 388 (2014) 10–16.

DOI: 10.1016/j.jnoncrysol.2014.01.013

Google Scholar

[20] A.T. Patel, H.R. Shevde, A. Pratap, Thermodynamics of Zr52. 5Cu17. 9Ni14. 6Al10Ti5 bulk metallic glass forming alloy, J. Therm. Anal. Calorim. 107 (2012) 167–170.

DOI: 10.1007/s10973-011-1591-9

Google Scholar

[21] R.T. Savalia, K.N. Lad, A. Pratap, G.K. Dey, S. Banerjee, Study of formation of nano–quasicrystals and crystallization kinetics of Zr–Al–Ni–Cu metallic glass, J. Therm. Anal. Calorim. 78 (2004) 745–751.

DOI: 10.1007/s10973-005-0441-0

Google Scholar

[22] Y.W. Yang, N.B. Hua, R. Li, S.J. Pang, T. Zhang, High–zirconium bulk metallic glasses with high strength and large ductility. Sci. China Phys. Mech. Astron. 56 (2013) 540–544.

DOI: 10.1007/s11433-013-5015-7

Google Scholar

[23] A.S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27 (1979) 47–58.

Google Scholar

[24] A. Ishii, A. Iwase, Y. Yokoyama, T.J. Konno, Y. Kawasuso, A. Yabu-uchi, M. Maekawa, F. Hori, Free volume in Zr–based bulk glassy alloys studied by positron annihilation techniques, J. Phys. Conf. Ser. 225 (2010) 012020–1–6.

DOI: 10.1088/1742-6596/225/1/012020

Google Scholar

[25] L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, S.L. Zhang, B.Y. Wang, Y.W. Zeng, J.Z. Jiang, New class of plastic bulk metallic glass, Phys. Rev. Lett. 100 (2008) 075501–1–4.

DOI: 10.1103/physrevlett.100.075501

Google Scholar

[26] H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702–1706.

DOI: 10.1021/ac60131a045

Google Scholar

[27] H.R. Wang, Y.L. Gao, G.H. Min, X.D. Hui, Y.F. Ye, Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region, Phys. Lett. A 314 (2003) 81–87.

DOI: 10.1016/s0375-9601(03)00853-3

Google Scholar

[28] E.A. Brandes, G.B. Brook, Smithells metals reference book, 7th ed., Butterworth–Heinmann, Boston, MA, (1998).

Google Scholar

[29] L.C. Chen, F. Spaepen, Calorimetric evidence for the micro–quasicrystalline structure of amorphous, Al/transition metal alloys, Nature 336 (1988) 366–368.

DOI: 10.1038/336366a0

Google Scholar

[30] H. Men, S.J. Pang, T. Zhang, Effect of Er dopping on glass-forming ability of Co50Cr15Mo14C15B6 alloy, J. Mater. Res. 21 (2006) 958–961.

Google Scholar

[31] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Metall. Pet. Eng. 135 (1939) 416–422.

Google Scholar

[32] S. Ranganathan, M.V. Heimendahi, The three activation energies with isothermal transformations: applications to metallic glasses, J. Mater. Sci. 16 (1981) 2401–2404.

DOI: 10.1007/bf01113575

Google Scholar