[1]
J. N. Tiwari, R. N. Tiwari, G. Singh and K. S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy, 2 (2013) 553-578.
DOI: 10.1016/j.nanoen.2013.06.009
Google Scholar
[2]
A. S. Arico, S. Srinivasan and V. Antonucci, DMFCs: From Fundamental Aspects to Technology Development, Fuel Cells, 1 (2001) 133-161.
DOI: 10.1002/1615-6854(200107)1:2<133::aid-fuce133>3.0.co;2-5
Google Scholar
[3]
W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, Journal of Physical Chemistry B, 107 (2003).
DOI: 10.1021/jp022505c
Google Scholar
[4]
H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources, 155 (2006) 95-110.
DOI: 10.1016/j.jpowsour.2006.01.030
Google Scholar
[5]
C. Sealy, The problem with platinum, Materials Today, 11 (2008) 65-68.
Google Scholar
[6]
L. Lin, Q. Zhu and A. W. Xu, Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells, Progress in Chemistry, 27 (2015) 1147-1157.
Google Scholar
[7]
A. Serov and C. Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application, Applied Catalysis B: Environmental, 90 (2009) 313-320.
DOI: 10.1016/j.apcatb.2009.03.030
Google Scholar
[8]
J. Zhang, S. Tang, L. Liao and W. Yu, Progress in non-platinum catalysts with applications in low temperature fuel cells, Chinese Journal of Catalysis, 34 (2013) 1051-1065.
DOI: 10.1016/s1872-2067(12)60588-9
Google Scholar
[9]
X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu and W. Xing, Recent advances in catalysts for direct methanol fuel cells, Energy & Environmental Science, 4 (2011) 2736.
DOI: 10.1039/c1ee01307f
Google Scholar
[10]
K. Sasaki and R. R. Adzic, Monolayer-Level Ru- and NbO[sub 2]-Supported Platinum Electrocatalysts for Methanol Oxidation, Journal of The Electrochemical Society, 155 (2008) B180.
DOI: 10.1149/1.2816238
Google Scholar
[11]
Q. Zhao, G. Zhang, G. Xu, Y. Li, B. Liu, X. Gong, D. Zheng, J. Zhang and Q. Wang, Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions, Applied Surface Science, 389 (2016) 181-189.
DOI: 10.1016/j.apsusc.2016.07.097
Google Scholar
[12]
S. Sen Gupta, S. Singh and J. Datta, Temperature effect on the electrode kinetics of ethanol electro-oxidation on Sn modified Pt catalyst through voltammetry and impedance spectroscopy, Materials Chemistry and Physics, 120 (2010) 682-690.
DOI: 10.1016/j.matchemphys.2009.12.023
Google Scholar
[13]
K. Taniya, H. Jinno, M. Kishida, Y. Ichihashi and S. Nishiyama, Preparation of Sn-modified silica-coated Pt catalysts: A new Pt-Sn bimetallic model catalyst for selective hydrogenation of crotonaldehyde, Journal of Catalysis, 288 (2012) 84-91.
DOI: 10.1016/j.jcat.2012.01.006
Google Scholar
[14]
J. Wang, Z. Wang, S. Li, R. Wang and Y. Song, Surface and interface engineering of FePt/C nanocatalysts for electro-catalytic methanol oxidation: enhanced activity and durability, Nanoscale (2017).
DOI: 10.1039/c6nr09122a
Google Scholar
[15]
V. Mazumder, M. Chi, K. L. More and S. Sun, Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction, Journal of the American Chemical Society, 132 (2010) 7848-7849.
DOI: 10.1021/ja1024436
Google Scholar
[16]
S. Guo, S. Zhang, D. Su and S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction, J Am Chem Soc, 135 (2013) 13879-84.
DOI: 10.1021/ja406091p
Google Scholar
[17]
D.-S. Yang, K.-S. Sim, H.-D. Kwen and S.-H. Choi, One-step preparation of Pt–M@FP-MWNT catalysts (M=Ru, Ni, Co, Sn, and Au) by γ-ray irradiation and their catalytic efficiency for CO and MeOH, Journal of Industrial and Engineering Chemistry, 18 (2012).
DOI: 10.1016/j.jiec.2011.11.059
Google Scholar
[18]
Y. Song, J. Hormes and C. S. Kumar, Microfluidic synthesis of nanomaterials, Small, 4 (2008) 698-711.
DOI: 10.1002/smll.200701029
Google Scholar
[19]
J. Wang, K. Zhao, X. Shen, W. Zhang, S. Ji, Y. Song, X. Zhang, R. Rong and X. Wang, Microfluidic synthesis of ultra-small magnetic nanohybrids for enhanced magnetic resonance imaging, J. Mater. Chem. C, 3 (2015) 12418-12429.
DOI: 10.1039/c5tc02279g
Google Scholar
[20]
J. Ma, J. Wang, X. Zhong, G. LI and Y. Song, Synthesis of Sn(1−x)Fex@FeySn(1−y) Oznanohybrids via a simple programmed microfluidic process, RSC Adv., 6 (2016) 84255-84261.
DOI: 10.1039/c6ra17768a
Google Scholar
[21]
T. S. Almeida, A. R. Van Wassen, R. B. Vandover, A. R. De Andrade and H. D. Abru A, Combinatorial PtSnM (M = Fe, Ni, Ru and Pd) nanoparticle catalyst library toward ethanol electrooxidation, Journal of Power Sources, 284 (2015) 623-630.
DOI: 10.1016/j.jpowsour.2015.03.055
Google Scholar
[22]
J. G. Speight, Lange's handbook of chemistry, McGraw-Hill New York, (2005).
Google Scholar
[23]
K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo and S. F. Bent, Active MnOxElectrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions, Advanced Energy Materials, 2 (2012).
DOI: 10.1002/aenm.201200230
Google Scholar
[24]
L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin and R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5 (2012).
DOI: 10.1039/c2ee21802j
Google Scholar
[25]
J. Liu, K. Elkins, V. H. LI, N. Nandwana, Z. Poudyal and Q. Jin, Phase Transformation of FePt Nanoparticles, IEEE Transactions on Magnetics, 42 (2006), 559-559.
DOI: 10.1109/intmag.2006.376283
Google Scholar
[26]
V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross and N. M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys : Pt-skin versus Pt-skeleton surfaces, Journal of the American Chemical Society, 128 (2006).
DOI: 10.1021/ja0600476
Google Scholar