Microfluidic Synthesis and Electrochemical Performance of Ternary Metals Nanoalloy: FePtSn

Article Preview

Abstract:

The ternary FePtSn alloy nanoparticles (NPs) were synthesized via a simple programmed microfluidic process, showing a great electrochemical performance in methanol oxidation reaction (MOR). The synthesis process exhibited convenient and spatial-temporal kinetics control of the NPs formation for a narrow size distribution, ultra-small (~2nm) and good dispersion features. The morphology, crystal structure and composition of FePtSn NPs were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD). FePtSn/C nanocatalyst ink could be further prepared by mixing the as-synthesized or annealed FePtSn NPs with carbon black powder and nafion. Their electrocatalytic performances were tested by the electrochemical work station. By contrast, the annealing treatment made more active sites exposed and facilitated the catalytic performance of FePtSn/C NPs. The electrochemical active surface areas (ECSAs, 42.8m2/g), catalytic activity (If: 588.1 mA/mg-Pt) and electrochemical durability of FePtSn/C nanocatalysts after annealing were greatly improved, comparing with as-synthesized samples and commercial Pt/C nanocatalysts for MOR. In addition, the onset potential of annealed FePtSn/C nanocatalysts was improved, much better than the commercial Pt/C nanocatalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

831-837

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. N. Tiwari, R. N. Tiwari, G. Singh and K. S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy, 2 (2013) 553-578.

DOI: 10.1016/j.nanoen.2013.06.009

Google Scholar

[2] A. S. Arico, S. Srinivasan and V. Antonucci, DMFCs: From Fundamental Aspects to Technology Development, Fuel Cells, 1 (2001) 133-161.

DOI: 10.1002/1615-6854(200107)1:2<133::aid-fuce133>3.0.co;2-5

Google Scholar

[3] W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, Journal of Physical Chemistry B, 107 (2003).

DOI: 10.1021/jp022505c

Google Scholar

[4] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources, 155 (2006) 95-110.

DOI: 10.1016/j.jpowsour.2006.01.030

Google Scholar

[5] C. Sealy, The problem with platinum, Materials Today, 11 (2008) 65-68.

Google Scholar

[6] L. Lin, Q. Zhu and A. W. Xu, Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells, Progress in Chemistry, 27 (2015) 1147-1157.

Google Scholar

[7] A. Serov and C. Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application, Applied Catalysis B: Environmental, 90 (2009) 313-320.

DOI: 10.1016/j.apcatb.2009.03.030

Google Scholar

[8] J. Zhang, S. Tang, L. Liao and W. Yu, Progress in non-platinum catalysts with applications in low temperature fuel cells, Chinese Journal of Catalysis, 34 (2013) 1051-1065.

DOI: 10.1016/s1872-2067(12)60588-9

Google Scholar

[9] X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu and W. Xing, Recent advances in catalysts for direct methanol fuel cells, Energy & Environmental Science, 4 (2011) 2736.

DOI: 10.1039/c1ee01307f

Google Scholar

[10] K. Sasaki and R. R. Adzic, Monolayer-Level Ru- and NbO[sub 2]-Supported Platinum Electrocatalysts for Methanol Oxidation, Journal of The Electrochemical Society, 155 (2008) B180.

DOI: 10.1149/1.2816238

Google Scholar

[11] Q. Zhao, G. Zhang, G. Xu, Y. Li, B. Liu, X. Gong, D. Zheng, J. Zhang and Q. Wang, Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions, Applied Surface Science, 389 (2016) 181-189.

DOI: 10.1016/j.apsusc.2016.07.097

Google Scholar

[12] S. Sen Gupta, S. Singh and J. Datta, Temperature effect on the electrode kinetics of ethanol electro-oxidation on Sn modified Pt catalyst through voltammetry and impedance spectroscopy, Materials Chemistry and Physics, 120 (2010) 682-690.

DOI: 10.1016/j.matchemphys.2009.12.023

Google Scholar

[13] K. Taniya, H. Jinno, M. Kishida, Y. Ichihashi and S. Nishiyama, Preparation of Sn-modified silica-coated Pt catalysts: A new Pt-Sn bimetallic model catalyst for selective hydrogenation of crotonaldehyde, Journal of Catalysis, 288 (2012) 84-91.

DOI: 10.1016/j.jcat.2012.01.006

Google Scholar

[14] J. Wang, Z. Wang, S. Li, R. Wang and Y. Song, Surface and interface engineering of FePt/C nanocatalysts for electro-catalytic methanol oxidation: enhanced activity and durability, Nanoscale (2017).

DOI: 10.1039/c6nr09122a

Google Scholar

[15] V. Mazumder, M. Chi, K. L. More and S. Sun, Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction, Journal of the American Chemical Society, 132 (2010) 7848-7849.

DOI: 10.1021/ja1024436

Google Scholar

[16] S. Guo, S. Zhang, D. Su and S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction, J Am Chem Soc, 135 (2013) 13879-84.

DOI: 10.1021/ja406091p

Google Scholar

[17] D.-S. Yang, K.-S. Sim, H.-D. Kwen and S.-H. Choi, One-step preparation of Pt–M@FP-MWNT catalysts (M=Ru, Ni, Co, Sn, and Au) by γ-ray irradiation and their catalytic efficiency for CO and MeOH, Journal of Industrial and Engineering Chemistry, 18 (2012).

DOI: 10.1016/j.jiec.2011.11.059

Google Scholar

[18] Y. Song, J. Hormes and C. S. Kumar, Microfluidic synthesis of nanomaterials, Small, 4 (2008) 698-711.

DOI: 10.1002/smll.200701029

Google Scholar

[19] J. Wang, K. Zhao, X. Shen, W. Zhang, S. Ji, Y. Song, X. Zhang, R. Rong and X. Wang, Microfluidic synthesis of ultra-small magnetic nanohybrids for enhanced magnetic resonance imaging, J. Mater. Chem. C, 3 (2015) 12418-12429.

DOI: 10.1039/c5tc02279g

Google Scholar

[20] J. Ma, J. Wang, X. Zhong, G. LI and Y. Song, Synthesis of Sn(1−x)Fex@FeySn(1−y) Oznanohybrids via a simple programmed microfluidic process, RSC Adv., 6 (2016) 84255-84261.

DOI: 10.1039/c6ra17768a

Google Scholar

[21] T. S. Almeida, A. R. Van Wassen, R. B. Vandover, A. R. De Andrade and H. D. Abru A, Combinatorial PtSnM (M = Fe, Ni, Ru and Pd) nanoparticle catalyst library toward ethanol electrooxidation, Journal of Power Sources, 284 (2015) 623-630.

DOI: 10.1016/j.jpowsour.2015.03.055

Google Scholar

[22] J. G. Speight, Lange's handbook of chemistry, McGraw-Hill New York, (2005).

Google Scholar

[23] K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo and S. F. Bent, Active MnOxElectrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions, Advanced Energy Materials, 2 (2012).

DOI: 10.1002/aenm.201200230

Google Scholar

[24] L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin and R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5 (2012).

DOI: 10.1039/c2ee21802j

Google Scholar

[25] J. Liu, K. Elkins, V. H. LI, N. Nandwana, Z. Poudyal and Q. Jin, Phase Transformation of FePt Nanoparticles, IEEE Transactions on Magnetics, 42 (2006), 559-559.

DOI: 10.1109/intmag.2006.376283

Google Scholar

[26] V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross and N. M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys : Pt-skin versus Pt-skeleton surfaces, Journal of the American Chemical Society, 128 (2006).

DOI: 10.1021/ja0600476

Google Scholar