[1]
M.S. Motta, P.K. Jena, E.A. Brocchi, I.G. Solorzano, Characterization of Cu-Al2O3 nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng. C. 15 (2001) 175-177.
DOI: 10.1016/s0928-4931(01)00272-7
Google Scholar
[2]
Z.Q. Xiang, Z. Li, Q. Lei, Z. Xiao, Y. Pang, Trans. Nonferr. Metal Soc. China. 25 (2015) 444-450.
Google Scholar
[3]
F. Cao, G. H. Wu, L. T. Jiang, G. Q. Chen, Application of Cu-C and Cu-V alloys in barrier-less copper metallization, Vacuum 122 (2015) 122-126.
DOI: 10.1016/j.vacuum.2015.09.011
Google Scholar
[4]
Z. W. Wu, J. D. Zhang, Y. Chen, L. Meng, J. Rare Earths. 27 (2009) 87-91.
Google Scholar
[5]
J.B. Liu, L. Zhang, L. Meng. Effects of rare-earth additions on the microstructure and strength of Cu-Ag composites. Mater. Sci. Eng. A. 498 (2008) 392-396.
DOI: 10.1016/j.msea.2008.08.014
Google Scholar
[6]
Y. Pang, C.D. Xia, M.P. Wang, Z. Li, Z. Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, C. Chen, J. Alloys and Compd. 582 (2014) 786-792.
Google Scholar
[7]
Y.X. Sun, Y.B. Ren, K. Yang, New preparation method of micronporous copper through physical vacuum dealloying of Cu-Zn alloys, Mate. Lett. 165 (2016) 1-4.
DOI: 10.1016/j.matlet.2015.11.102
Google Scholar
[8]
J.L. Liu, H.Y. Huang, J.X. Xie, Mater. Design. 85 (2015) 211-220.
Google Scholar
[9]
L. Zhang, L. Meng. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys. Mater. Sci. Technol. 19 (2003) 75-83.
DOI: 10.1179/026708303225008617
Google Scholar
[10]
Y.M. Shabana, B.L. Karihaloo, H.X. Zhu, S. Kulasegaram, Compos. A Appl. Sci. Manuf. 46 (2013) 140-146.
Google Scholar
[11]
Q. Fang, Z.X. Kang, Y.W. Gan, Y. Long, Mater. Design. 88 (2015) 8–15.
Google Scholar
[12]
Z. Mu, H.R. Geng, M.M. Li, G.L. Nie, J.F. Leng, Effects of Y2O3 on the property of copper based contact materials, Compos. B Eng. 52 (2013) 51-55.
DOI: 10.1016/j.compositesb.2013.02.036
Google Scholar
[13]
S.S. Feng, H.R. Geng, Z.Q. Guo, Effect of lubricants on warm compaction process of Cu-based composite, Compos. B Eng. 43 (2012) 933-939.
DOI: 10.1016/j.compositesb.2011.09.004
Google Scholar
[14]
H.Q. Li, S.S. Xie, X.J. Mi, Y. Liu, P.Y. Wu, L. Cheng, Influence of Cerium and Yttrium on Cu-Cr-Zr Alloys, J. Rare Earths. 24 (2006) 367-371.
DOI: 10.1016/s1002-0721(07)60403-7
Google Scholar
[15]
J.B. Liu, Y.W. Zeng, L. Meng. Crystal structure and morphology of a rare-earth compound in Cu-12 wt. % Ag, J. Alloys Compd. 468 (2009) 73-76.
DOI: 10.1016/j.jallcom.2007.12.070
Google Scholar
[16]
Z.F. Zhang, G.Y. Lin, S.H. Zhang, J. Zhou, Effects of Ce on microstructure and mechanical properties of pure copper, Mater. Sci. Eng. A 457 (2007) 313-318.
DOI: 10.1016/j.msea.2006.12.056
Google Scholar
[17]
Y. Chen, M. Cheng, H.W. Song, S.H. Shang, J.S. Liu, Y. Zhu, Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper, J. Rare Earths. 32 (2014) 1056-1063.
DOI: 10.1016/s1002-0721(14)60183-6
Google Scholar
[18]
H.W. Jiang, J. Li, H.R. Geng, Q.L. Wang, Influence of cooling rate and addition of lanthanum and cerium onformation of nanoporous copper by chemical dealloying of Cu15Al85 alloy, J. Rare Earths. 31 (2013) 1119-1123.
DOI: 10.1016/s1002-0721(12)60414-1
Google Scholar
[19]
D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloys Compd. 352 (2003) 84–88.
DOI: 10.1016/s0925-8388(02)01162-3
Google Scholar
[20]
F.G. Qi, D.F. Zhang, X.H. Zhang, F.S. Pan, Effect of Y addition on microstructure and mechanical properties of Mg-Zn-Mn alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 1352-1364.
DOI: 10.1016/s1003-6326(14)63199-x
Google Scholar
[21]
M.B. Yang, M.D. Hou, J. Zhang, F.S. Pan, Effects of Ce, Y and Gd additions on as-cast microstructure and mechanical properties of Mg-3Sn-2Sr magnesium alloy, Trans. Nonferrous Met. Soc. China. 24(2014) 2497−2506.
DOI: 10.1016/s1003-6326(14)63376-8
Google Scholar
[22]
H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd. 663 (2016) 321-331.
DOI: 10.1016/j.jallcom.2015.12.057
Google Scholar
[23]
R.S. Maurya, T. Laha, Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al–TM–RE Based Amorphous Alloys, J. Mater. Sci. & Tech. 31 (2015) 1118–1124.
DOI: 10.1016/j.jmst.2015.09.007
Google Scholar
[24]
Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Microstructure and mechanical properties of rare-earth-modified Al-1Fe binary alloys, Mater. Sci. Eng. A 632 (2015) 62-71.
DOI: 10.1016/j.msea.2015.02.068
Google Scholar
[25]
Y. Lu, Q.D. Wang, X.Q. Zeng, Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys, Mater. Sci. Eng. A 278 (2000) 66-76.
DOI: 10.1016/s0921-5093(99)00604-8
Google Scholar
[26]
S. Mula, D. Setman, K. Youssef, R.O. Scattergood, C. Koch, Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties, J. Alloys Compd. 627 (2015) 108-116.
DOI: 10.1016/j.jallcom.2014.12.114
Google Scholar
[27]
Z. Xiao, H.R. Geng, C.Y. Sun, P. Jia, H. Luo, Effect of yttrium on properties of copper prepared by powder metallurgy, Adv. Powder Technol. 26 (2015) 1079-1086.
DOI: 10.1016/j.apt.2015.05.003
Google Scholar
[28]
X.Y. Mao, F. Fang, J. Q Jiang, R.S. Tan, Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater, J. Rare Earths. 27 (2009) 1037-1041.
DOI: 10.1016/s1002-0721(08)60384-1
Google Scholar
[29]
D. Janovszky, K. Tomolya, M. Sveda, A. Sycheva, G. Kaptay, Effect of Y and Ni addition on liquid immiscibility in Cu-Zr-Ag ternary Alloys, J. Alloys Compd. 615 (2014) 616-620.
DOI: 10.1016/j.jallcom.2013.12.087
Google Scholar
[30]
Z.Y. Pan, J.B. Chen, J.F. Li, Microstructure and properties of rare earth-containing Cu-Cr-Zr alloy, Trans. Nonferrous Met. Soc. China. 25(2015) 1206-1214.
DOI: 10.1016/s1003-6326(15)63717-7
Google Scholar
[31]
W. Wang, R.G. Li, C.L. Zou, Z.N. Chen, W. Wen, T.M. Wang, G.M. Yin, Effect of direct current pulses on mechanical and electrical properties of aged Cu-Cr-Zr alloys, Mater. Design 92 (2016) 135-142.
DOI: 10.1016/j.matdes.2015.12.013
Google Scholar
[32]
H. Okamoto, Cu-Y (copper-yttrium), J. Phase Equilib. 13 (1992) 102-103.
Google Scholar
[33]
M.D. Sanderson, J.C. Scully, Room temperature oxidation of Cu and some Cu alloys, Corros. Sci. 10 (1970) 55-57.
DOI: 10.1016/s0010-938x(70)80098-1
Google Scholar
[34]
S.K. Roy, P.K. Krishnamoorthy, S.C. Sircar, Kinetics of oxidation of copper at low temperatures under the influence of externally induced current flow, Acta Metall. 18 (1970) 519-529.
DOI: 10.1016/0001-6160(70)90139-2
Google Scholar
[35]
L. Yuan, X.M. Chen, S. Maganty, J. Cho, C.H. Ke, G.W. Zhou, Enhancing the oxidation resistance of copper by using sandblasted copper surfaces, Appl. Surf. Sci. 357 (2015) 2160-2168.
DOI: 10.1016/j.apsusc.2015.09.203
Google Scholar