Effects of Rare Earth Y Addition on Microstructural and Properties of Pure Copper

Article Preview

Abstract:

The effects of rare earth Y addition on microstructure and properties of pure copper were investigated. Mechanical test, electrical test, oxidation resistance test, metalloscope, scanning electronic microscope (SEM) and X-ray difffraction (XRD) were performed to study the properties, microstructure and constitution. The results showed that both the hardness and antioxidant properties obviously increased with the increase of Y, confirmed the successful refinement role of Y. A small amount of Y (less than 0.5 wt.%) could improve the electrical conductivity of pure copper. When the Y content reached 0.2 wt.%, pure coppers obtained optimum electrical conductivity which is 96.8% IACS. However, over-added Y (>0.5 wt.%) resulted in second phase of Cu7Y coarsening and non-homogeneous microstructures forming, which reduces the conductivity of copper. In addition, Y can effectively purify the organization of molten copper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

862-869

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Motta, P.K. Jena, E.A. Brocchi, I.G. Solorzano, Characterization of Cu-Al2O3 nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng. C. 15 (2001) 175-177.

DOI: 10.1016/s0928-4931(01)00272-7

Google Scholar

[2] Z.Q. Xiang, Z. Li, Q. Lei, Z. Xiao, Y. Pang, Trans. Nonferr. Metal Soc. China. 25 (2015) 444-450.

Google Scholar

[3] F. Cao, G. H. Wu, L. T. Jiang, G. Q. Chen, Application of Cu-C and Cu-V alloys in barrier-less copper metallization, Vacuum 122 (2015) 122-126.

DOI: 10.1016/j.vacuum.2015.09.011

Google Scholar

[4] Z. W. Wu, J. D. Zhang, Y. Chen, L. Meng, J. Rare Earths. 27 (2009) 87-91.

Google Scholar

[5] J.B. Liu, L. Zhang, L. Meng. Effects of rare-earth additions on the microstructure and strength of Cu-Ag composites. Mater. Sci. Eng. A. 498 (2008) 392-396.

DOI: 10.1016/j.msea.2008.08.014

Google Scholar

[6] Y. Pang, C.D. Xia, M.P. Wang, Z. Li, Z. Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, C. Chen, J. Alloys and Compd. 582 (2014) 786-792.

Google Scholar

[7] Y.X. Sun, Y.B. Ren, K. Yang, New preparation method of micronporous copper through physical vacuum dealloying of Cu-Zn alloys, Mate. Lett. 165 (2016) 1-4.

DOI: 10.1016/j.matlet.2015.11.102

Google Scholar

[8] J.L. Liu, H.Y. Huang, J.X. Xie, Mater. Design. 85 (2015) 211-220.

Google Scholar

[9] L. Zhang, L. Meng. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys. Mater. Sci. Technol. 19 (2003) 75-83.

DOI: 10.1179/026708303225008617

Google Scholar

[10] Y.M. Shabana, B.L. Karihaloo, H.X. Zhu, S. Kulasegaram, Compos. A Appl. Sci. Manuf. 46 (2013) 140-146.

Google Scholar

[11] Q. Fang, Z.X. Kang, Y.W. Gan, Y. Long, Mater. Design. 88 (2015) 8–15.

Google Scholar

[12] Z. Mu, H.R. Geng, M.M. Li, G.L. Nie, J.F. Leng, Effects of Y2O3 on the property of copper based contact materials, Compos. B Eng. 52 (2013) 51-55.

DOI: 10.1016/j.compositesb.2013.02.036

Google Scholar

[13] S.S. Feng, H.R. Geng, Z.Q. Guo, Effect of lubricants on warm compaction process of Cu-based composite, Compos. B Eng. 43 (2012) 933-939.

DOI: 10.1016/j.compositesb.2011.09.004

Google Scholar

[14] H.Q. Li, S.S. Xie, X.J. Mi, Y. Liu, P.Y. Wu, L. Cheng, Influence of Cerium and Yttrium on Cu-Cr-Zr Alloys, J. Rare Earths. 24 (2006) 367-371.

DOI: 10.1016/s1002-0721(07)60403-7

Google Scholar

[15] J.B. Liu, Y.W. Zeng, L. Meng. Crystal structure and morphology of a rare-earth compound in Cu-12 wt. % Ag, J. Alloys Compd. 468 (2009) 73-76.

DOI: 10.1016/j.jallcom.2007.12.070

Google Scholar

[16] Z.F. Zhang, G.Y. Lin, S.H. Zhang, J. Zhou, Effects of Ce on microstructure and mechanical properties of pure copper, Mater. Sci. Eng. A 457 (2007) 313-318.

DOI: 10.1016/j.msea.2006.12.056

Google Scholar

[17] Y. Chen, M. Cheng, H.W. Song, S.H. Shang, J.S. Liu, Y. Zhu, Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper, J. Rare Earths. 32 (2014) 1056-1063.

DOI: 10.1016/s1002-0721(14)60183-6

Google Scholar

[18] H.W. Jiang, J. Li, H.R. Geng, Q.L. Wang, Influence of cooling rate and addition of lanthanum and cerium onformation of nanoporous copper by chemical dealloying of Cu15Al85 alloy, J. Rare Earths. 31 (2013) 1119-1123.

DOI: 10.1016/s1002-0721(12)60414-1

Google Scholar

[19] D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloys Compd. 352 (2003) 84–88.

DOI: 10.1016/s0925-8388(02)01162-3

Google Scholar

[20] F.G. Qi, D.F. Zhang, X.H. Zhang, F.S. Pan, Effect of Y addition on microstructure and mechanical properties of Mg-Zn-Mn alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 1352-1364.

DOI: 10.1016/s1003-6326(14)63199-x

Google Scholar

[21] M.B. Yang, M.D. Hou, J. Zhang, F.S. Pan, Effects of Ce, Y and Gd additions on as-cast microstructure and mechanical properties of Mg-3Sn-2Sr magnesium alloy, Trans. Nonferrous Met. Soc. China. 24(2014) 2497−2506.

DOI: 10.1016/s1003-6326(14)63376-8

Google Scholar

[22] H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd. 663 (2016) 321-331.

DOI: 10.1016/j.jallcom.2015.12.057

Google Scholar

[23] R.S. Maurya, T. Laha, Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al–TM–RE Based Amorphous Alloys, J. Mater. Sci. & Tech. 31 (2015) 1118–1124.

DOI: 10.1016/j.jmst.2015.09.007

Google Scholar

[24] Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Microstructure and mechanical properties of rare-earth-modified Al-1Fe binary alloys, Mater. Sci. Eng. A 632 (2015) 62-71.

DOI: 10.1016/j.msea.2015.02.068

Google Scholar

[25] Y. Lu, Q.D. Wang, X.Q. Zeng, Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys, Mater. Sci. Eng. A 278 (2000) 66-76.

DOI: 10.1016/s0921-5093(99)00604-8

Google Scholar

[26] S. Mula, D. Setman, K. Youssef, R.O. Scattergood, C. Koch, Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties, J. Alloys Compd. 627 (2015) 108-116.

DOI: 10.1016/j.jallcom.2014.12.114

Google Scholar

[27] Z. Xiao, H.R. Geng, C.Y. Sun, P. Jia, H. Luo, Effect of yttrium on properties of copper prepared by powder metallurgy, Adv. Powder Technol. 26 (2015) 1079-1086.

DOI: 10.1016/j.apt.2015.05.003

Google Scholar

[28] X.Y. Mao, F. Fang, J. Q Jiang, R.S. Tan, Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater, J. Rare Earths. 27 (2009) 1037-1041.

DOI: 10.1016/s1002-0721(08)60384-1

Google Scholar

[29] D. Janovszky, K. Tomolya, M. Sveda, A. Sycheva, G. Kaptay, Effect of Y and Ni addition on liquid immiscibility in Cu-Zr-Ag ternary Alloys, J. Alloys Compd. 615 (2014) 616-620.

DOI: 10.1016/j.jallcom.2013.12.087

Google Scholar

[30] Z.Y. Pan, J.B. Chen, J.F. Li, Microstructure and properties of rare earth-containing Cu-Cr-Zr alloy, Trans. Nonferrous Met. Soc. China. 25(2015) 1206-1214.

DOI: 10.1016/s1003-6326(15)63717-7

Google Scholar

[31] W. Wang, R.G. Li, C.L. Zou, Z.N. Chen, W. Wen, T.M. Wang, G.M. Yin, Effect of direct current pulses on mechanical and electrical properties of aged Cu-Cr-Zr alloys, Mater. Design 92 (2016) 135-142.

DOI: 10.1016/j.matdes.2015.12.013

Google Scholar

[32] H. Okamoto, Cu-Y (copper-yttrium), J. Phase Equilib. 13 (1992) 102-103.

Google Scholar

[33] M.D. Sanderson, J.C. Scully, Room temperature oxidation of Cu and some Cu alloys, Corros. Sci. 10 (1970) 55-57.

DOI: 10.1016/s0010-938x(70)80098-1

Google Scholar

[34] S.K. Roy, P.K. Krishnamoorthy, S.C. Sircar, Kinetics of oxidation of copper at low temperatures under the influence of externally induced current flow, Acta Metall. 18 (1970) 519-529.

DOI: 10.1016/0001-6160(70)90139-2

Google Scholar

[35] L. Yuan, X.M. Chen, S. Maganty, J. Cho, C.H. Ke, G.W. Zhou, Enhancing the oxidation resistance of copper by using sandblasted copper surfaces, Appl. Surf. Sci. 357 (2015) 2160-2168.

DOI: 10.1016/j.apsusc.2015.09.203

Google Scholar