[1]
B. Li, Y. Shen, W. Hu, Casting defects induced fatigue damage in aircraft frames of ZL205A aluminum alloy-A failure analysis, Mater. Design. 32 (2011) 2570-2582.
DOI: 10.1016/j.matdes.2011.01.039
Google Scholar
[2]
J. H. Jang, D. G. Nam, Y. H. Park, Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al-Cu alloy, T. Nonferr. Metal. Soc. 23 (2013) 631-635.
DOI: 10.1016/s1003-6326(13)62509-1
Google Scholar
[3]
P. Jia, Q. Wang. The key technology of a stand casting of high strength Al-Cu Alloy ZL205A, Rare. Metals. 73 (1999) 2332-2335.
Google Scholar
[4]
K. Lu, L. Lu, S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science. 324 (2009) 349-52.
DOI: 10.1126/science.1159610
Google Scholar
[5]
R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sc. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[6]
Y. Fukuda, K. Oh-Ishi, M. Furukawa, Influence of crystal orientation on ECAP of aluminum single crystals, Mater. Sci. Eng. A. 420 (2006) 79-86.
DOI: 10.1016/j.msea.2006.01.086
Google Scholar
[7]
S. V. Dobatkin, J. Gubicza, D. V. Shangina, High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation, Mater. Let. 153 (2015) 5-9.
DOI: 10.1016/j.matlet.2015.03.144
Google Scholar
[8]
N. Takata, S. H. Lee, N. Tsuji, Ultrafine grained copper alloy sheets having both high strength and high electric conductivity, Mater. Let. 63 (2009) 1757-1760.
DOI: 10.1016/j.matlet.2009.05.021
Google Scholar
[9]
S. A. Torbati-Sarraf, R. Mahmudi. Microstructure and mechanical properties of extruded and ECAPed AZ31 Mg alloy, grain refined with Al-Ti-C master alloy, Mater. Sci. Eng. A. 527 (2010) 3515-3520.
DOI: 10.1016/j.msea.2010.02.035
Google Scholar
[10]
Y. S. Li, H. Zhai, Z. J. Feng, Formation law and criterion of nebulous macroscopic segregation in ZL205A alloy castings, China. Foundry. 5 (2008) 20-23.
Google Scholar
[11]
Y. Iwahashi, J. Wang, Z. Horita, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta. Mater. 35 (1996) 143-146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[12]
T. B. Guo, Y. T. Ding, X. F. Yuan, Microstructure and Orientation Evolution of Unidirectional Solidification Pure Copper during ECAP, Rare. Metal. Mat. Eng. 40 (2011) 171-175.
Google Scholar
[13]
X. B. Yun, B. Y. Song, L. Chen, Ultra-fine grain copper prepared by continuous equal channel angular press, Chin. J. Nonferrous. Met. 16 (2006) 1563-1569.
Google Scholar
[14]
V. Yamakov, D. Wolf, M. Salazar, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta. Metall. Sin. 49 (2001) 2713-2722.
DOI: 10.1016/s1359-6454(01)00167-7
Google Scholar