Preparation and High Photocatalytic Performance of Spherical BiOCl Photocatalyst

Article Preview

Abstract:

The smooth spherical BiOCl photocatalyst was synthesized successfully by a facile solvothermal method and further characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer and UV-Vis diffuse reflectance spectra techniques. The photocatalytic activity of as-prepared photoctalyst was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation (λ>420 nm). The results showed that the BiOCl with smooth spherical morphology exhibits an excellent photocatalytic activity and stability. RhB was thoroughly degraded after 60 min of visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-174

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Xing, D. Qi, J. Zhang, F. Chen and B. Tian: Journal of Catalysis, Vol. 294 (2012), pp.37-46.

Google Scholar

[2] M. Xing, J. Zhang, F. Chen and B. Tian: Chemistry Communication, Vol. 47 (2011), pp.4947-4949.

Google Scholar

[3] F. Han. V.S.R. Kambala, M. Srinivasan, D. Rajarathnam and R. Naidu: Applied Catalysis A General, Vol. 359 (2009), pp.25-40.

DOI: 10.1016/j.apcata.2009.02.043

Google Scholar

[4] S.D. Sharma, K.K. Saini, C.P. Sharma and S.C. Jain: Applied Catalysis B Environmental, Vol. 84 (2008), pp.233-240.

Google Scholar

[5] K. Chen, J,Y. Li, W.X. Wang, Y.M. Zhang, X.J. Wang and H.Q. Su: Materials Science in Semiconductor Progressing, Vol. 15 (2012), pp.20-26.

Google Scholar

[6] Z.G. Jia, D.P. Ren, L.X. Xu and R.S. Zhu: Materials Science in Semiconductor Progressing, Vol. 15 (2012), pp.270-276.

Google Scholar

[7] K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji and H. Sugihara: Applied Catalyst B: Environmental, Vol. 94 (2010), pp.150-157.

Google Scholar

[8] I. Tsuji, H. Kato and A. Kudo: Chemistry of Materials, Vol. 18 (2006), p.1969-(1975).

Google Scholar

[9] S.Q. Peng, Y.H. Huang and Y.X. Li: Materials Science in Semiconductor Processing, Vol. 16 (2013), pp.62-69.

Google Scholar

[10] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara and K.J. Domen: Journal of Physical Chemistry B, Vol. 108 (2004), pp.2637-2642.

Google Scholar

[11] P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei and M.H. Whangbo: Angewandte Chemie International Edition, Vol. 47 (2008), pp.7931-7933.

Google Scholar

[12] C. Wang, J. Yan, X.Y. Wu, Y.H. Song, G.B. Cai, H. Xu, J.X. Zhu and H.M. Li: Applied Surface Science, Vol. 273 (2013), pp.159-166.

Google Scholar

[13] L. Zhou, W.Z. Wang, L.S. Zhang, H.L. Xu and W. Zhu: Journal of Physical Chemistry C, Vol. 111 (2007), pp.13659-13664.

Google Scholar

[14] L.S. Zhang, W.Z. Wang, Z.G. Chen, L. Zhou, H.L. Xua and W. Zhu: Journal of Materials Chemistry, Vol. 17 (2007), pp.2526-2532.

Google Scholar

[15] A. Martinez-dela Cruz and S. Obregon Alfaro: Journal of Molecular Catalysis A Chemical, Vol. 320 (2010), pp.85-91.

Google Scholar

[16] T. Wu, X. Zhou, H. Zhang and X. Zhong: Nano Research, 3 (2010), pp.379-386.

Google Scholar

[17] V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, E. Tenea and M. Popa: Journal of the European Ceramic Society, Vol. 26 (2006), pp.3011-3016.

DOI: 10.1016/j.jeurceramsoc.2006.02.019

Google Scholar

[18] M.A. Gondal, X.F. Chang and Z.H. Yamani: Chemical Engineering Journal, Vol. 165 (2010), pp.250-257.

Google Scholar

[19] X.F. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G.B. Ji, S.B. Deng and G. Yu: Catalysis Communications, Vol. 11 (2010), pp.460-464.

Google Scholar

[20] W.L. Huang and Q.S. Zhu: Computational Materials Science, Vol. 43 (2008), pp.1101-1108.

Google Scholar

[21] X. Xiao and W.D. Zhang: RSC Advances, Vol. 1 (2011), pp.1099-1105.

Google Scholar

[22] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng and W.D. Wang: Applied Catalysis B: Environmental, Vol. 68 (2006), pp.125-129.

Google Scholar

[23] Z. Liu, X.X. Xu, J.Z. Fang, X.M. Zhu, J.H. Chu and B.J. Li: Applied Surface Science, Vol. 258 (2012), pp.3771-3778.

Google Scholar

[24] X.F. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G.B. Ji, S.B. Deng and G. Yu: Catalysis Communications, Vol. 11(2010), No.5, p.460.

Google Scholar

[25] Y.Q. Lei, G.H. Wang, S.Y. Song, W.Q. Fan, and H.J. Zhang: CrystEngComm, Vol. 11 (2009), pp.1857-1862.

Google Scholar

[26] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng and W.D. Wang: Applied Catalysis B: Environmental, Vol. 68 (2006), p.125.

Google Scholar

[27] J.M. Song, C.J. Mao, H.L. Niu, Y.H. Sheng and S.Y. Zhang: CrystEngComm, Vol. 12 (2010), p.3875.

Google Scholar

[28] K. Dai, L. Lu, J. Dong, Z. Ji, G. Zhu and Q. Liu: Dalton Trans, Vol. 42 (2013), p.4657.

Google Scholar

[29] Z.J. Zhang, W.Z. Wang, E.P. Gao, M. Shang and J.H. Xu: Journal of Hazardous Materials, Vol. 196 (2011), pp.255-262.

Google Scholar

[30] T. Watanabe, T. Takizawa and K. Honda: Journal of Physical Chemistry, Vol. 81(1977), pp.1845-1851.

Google Scholar