The Solvatochromic Materials: A Progress Review

Article Preview

Abstract:

Solvatochromic compounds attracted more and more attentions in the application of fluorescent probe, indicator, chromogenic reagent, molecular recognition field and so on. Although sovatochromic effects have been discovered for more than a century, they are still difficult to understand and even more difficult to predict. This review introduced organometallic complexes and organic compounds of solvatochromic materials and highlight the latest progress in recent years, and the molecular structure design and solvatochromic properties are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-192

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C Reichardt. Solvatochromic dyes as solvent polarity indicators [J]. Chem Rev, 1994, 94(8): 2319-2358.

DOI: 10.1021/cr00032a005

Google Scholar

[2] Information on https: /en. wikipedia. org/wiki/Solvatochromism.

Google Scholar

[3] A Marini, A Munoz-Losa, A Biancardi, et al. What is solvatochromism[J]. J Phys Chem B, 2010, 114(51): 17128-17135.

DOI: 10.1021/jp1097487

Google Scholar

[4] R Cabot, C A Hunter. Molecular probes of solvation phenomena [J]. Chem Soc Rev, 2012, 41(9): 3485-3492.

DOI: 10.1039/c2cs15287h

Google Scholar

[5] A Kundt. Uber den Einfluss von Losungsmitteln auf die Absorptionsspektren geloster absorbierender Medien [J]. Poggendorfs Annalen der Physik und Chemie, N. F. 1878, 4, 34-54; Chem. Zentralbl. 1878, 498. (In German).

DOI: 10.1002/andp.18782400503

Google Scholar

[6] S E Sheppard. For a survey of older work on solvent effects on UV/vis spectra [J]. Reu. Mod. Phys. 1942, 14: 303-340.

Google Scholar

[7] K Ziegler. Methoden der Organischen Chemie (Thieme publications, Stuttgart 1955), P. 738.

Google Scholar

[8] F Franks and D J G Ives. The structural properties of alcohol–water mixtures [J]. Rev. Chem. Soc., 1966, 20(1).

Google Scholar

[9] J. Burgess, J. G. Chambers and R. I. Haines. Solvatochromic behaviour of intramolecular charge-transfer spectra of inorganic diimine complexes [J]. Transition Met. Chem. 1981, 6(3): 145-151.

DOI: 10.1007/bf00624333

Google Scholar

[10] W. Kaim, S. Ernst, and S. Kohlmann: Farbige Komplexe: das Charge-Transfer-Pha¨nomen, Chemie in unserer Zeit 21, 50 (1987).

DOI: 10.1002/ciuz.19870210204

Google Scholar

[11] D. M. Manuta and A. J. Lees. Solvent and substituent effects on the lowest energy excited states of M(CO)4(diimine) (M = Cr, Mo, W) complexes. Inorg. Chem., 1983, 22(25): 3825-3828.

DOI: 10.1021/ic00167a031

Google Scholar

[12] S. Ernst, Y Kurth and W. Kaim. Correlation between solvatochromism and back-bonding in four isomeric (α-diimine)M(CO)4 complexes, M = Cr, Mo, W [J]. J. Organomet. Chem. 1986, 302(2): 211-215.

DOI: 10.1016/0022-328x(86)80084-5

Google Scholar

[13] W. Kaim and S. Kohlmann. Exceptionally variable solvatochromism of centrosymmetric octacarbonyldimolybdenum(0) complexes. Rules to estimate the solvent sensitivity of charge-transfer absorption energies. Inorg Chem., 1986, 25(18): 3306 - 3310.

DOI: 10.1021/ic00238a040

Google Scholar

[14] R. E. Shepherd, M. F. Hoq, N. Hoblack, and C. R. Johnson. Solvatochromism of the LMCT transition of pentacyanoferrate(III) complexes. Inorg Chem., 1984, 23(20), 3249-3252.

DOI: 10.1021/ic00188a043

Google Scholar

[15] Reichardt C. Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH publication, Weinheim 2003).

Google Scholar

[16] N. G. Bakshiev, M. I. Knyazhanskii, V. I. Minkin, O. A. Osipov, and G. V. Saidov: Experimental Determination of the Dipole Moments of Organic Molecules in Excited Electronic States, Usp. Khim. 38, 1644 (1969); Russ. Chem. Rev. 38, 740 (1969).

DOI: 10.1070/rc1969v038n09abeh001831

Google Scholar

[17] W. Liptay: Dipole Moments and Polarizabilities of Molecules in Excited Electronic States, in E. C. Linn (ed. ): Excited States, Academic Press, New York, London, 1974, Vol. I, p. 129ff.

DOI: 10.1016/b978-0-12-227201-1.50009-7

Google Scholar

[18] Seo J, Kim S, Park S Y. Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer[J]. J Am Chem Soc, 2004, 126(36): 11154-11155.

DOI: 10.1021/ja047815i

Google Scholar

[19] Droumaguet C L, Mongin O, Werts M H V, et al. Towards smart multiphoton fluorophores: strongly solvatochromic probes for two-photon sensing of micropolarity[J]. Chem Commun, 2005, 41(22): 2802-2804.

DOI: 10.1039/b502585k

Google Scholar

[20] Bohne C, Ihmels H, Waidelich M, et al. N-Acylureido functionality as acceptor substituent in solvatochromic fluorescence probes [J]. J Am Chem Soc, 2005, 127(49): 17158-17159.

DOI: 10.1021/ja052262c

Google Scholar

[21] Yao Y-S, Zhou Q-X, Wang X-S, et al. A DCM-type red-fluorescent dopant for high-performance organic electroluminescent devices [J]. Adv Funct Mater, 2007, 17(1): 93-100.

DOI: 10.1002/adfm.200600055

Google Scholar

[22] Ando Y, Homma Y, Hiruta Y, et al. Structural characteristics and optical properties of a series of solvatochromic fluorescent dyes displaying long-wavelength emission[J]. Dyes Pigments, 2009, 83(2): 198-206.

DOI: 10.1016/j.dyepig.2009.04.008

Google Scholar

[23] Kim S-H, Lee S-Y, Gwon S-Y, et al. D-π-A solvatochromic charge transfer dyes containing a 2-cyanomethylene-3-cyano-4, 5, 5-trimethyl-2, 5-dihydrofuran acceptor[J]. Dyes Pigments, 2010, 84(2): 169-175.

DOI: 10.1016/j.dyepig.2009.07.012

Google Scholar

[24] ]Shao J, Ji S, Li X, Zhao J, et al. Thiophene-inserted aryl-dicyanovinyl compounds: the second generation of fluorescent molecular rotors with significantly redshifted emission and large stokes shift[J]. Eur J Org Chem, 2011, 30: 6100-6109.

DOI: 10.1002/ejoc.201100891

Google Scholar

[25] Yazdanbakhsh M R, Mohammadi A, Abbasnia M. Some heterocyclic azo dyes derived from thiazolyl derivatives: synthesis, substituent effects and solvatochromic studies [J]. Spectrochim Acta Part A, 2010, 77(5): 1084-1087.

DOI: 10.1016/j.saa.2010.08.079

Google Scholar

[26] Gupta V D, Tathe A B, Padalkar V S, et al. Red emitting solid state fluorescent triphenylamine dyes: Synthesis, photo-physical property and DFT study [J]. Dyes Pigments, 2013, 97(3): 429-439.

DOI: 10.1016/j.dyepig.2012.12.024

Google Scholar

[27] Vincent Diemer, He´le`ne Chaumeil et al. Synthesis of 4-[N-methyl-4-pyridinio]-phenolate (POMP) and negative solvatochromism of this model molecule in view of nonlinear optical applications [J]. Tetrahedron Letters 46 (2005) 4737–4740.

DOI: 10.1016/j.tetlet.2005.05.031

Google Scholar

[28] LM Birsa, LV Asaftei. Solvatochromism of mesoionic iodo(1, 3-dithiol-2-ylium-4-yl)phenolates [J]. Monatshefte für Chemie - Chemical Monthly, 2008, 139 (12): 1433-1438.

DOI: 10.1007/s00706-008-0944-y

Google Scholar

[29] Yousuke Ooyama, Risa Asada, Shogo Inoue et al. Solvatochromism of novel donor–p–acceptor type pyridinium dyes in halogenated and non-halogenated solvents. New Journal of Chemistry, 2009, 33: 2311–2316.

DOI: 10.1039/b9nj00332k

Google Scholar

[30] Dibakar Sahoo, Prosenjit Bhattacharya, and Sankar Chakravorti*. Spectral Signature of 2-[4-(Dimethylamino)styryl]-1-methylquinolinium Iodide: A Case of Negative Solvatochromism in Water. J. Phys. Chem. B, 2011, 115 (37): 10983–10989.

DOI: 10.1021/jp2046239

Google Scholar

[31] Alexander Schade, Roberto Menzel, Helmar Görls et al. Negative Solvatochromism of an Anionic Thiazole-Based Dye [J]. Aisan Journal of Organic Chemistry, 2013, 2(6): 498-503.

DOI: 10.1002/ajoc.201300085

Google Scholar