Combined Computational and Experimental Study of the Pressure Dependence of the Structural and Vibrational Properties on Solid Naphthalene C10H8

Article Preview

Abstract:

We present high-quality optical data and density functional theory calculations for the structural and vibrational properties of solid naphthalene (C10H8) under pressure up to 21.5 GPa. Our results demonstrate that almost all the modes shift toward higher frequencies and some peaks are broadened with increasing pressure. Comparing the pressure effect on the shortest intermolecular distances and on the bond lengths we confirm the expected result that the intramolecular interaction are less sensitive to pressure than the intermolecular interactions. These findings are shown to be in agreement with experimental results and hint towards the evolution of intermolecular interaction with pressure. Moreover, within our data the lattice modes exhibit more drastic changes than intramolecular modes, which are due to there being greater intermolecular distortions than intramolecular under applied pressure. In combination with theoretical and experimental studies, these results permit detailed characterization of the structural and vibrational changes of naphthalene as a function of pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-181

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.A. Silinsh, and V. Capek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (Springer-Verlag, Berlin, Heidelberg, and New York, 1994).

Google Scholar

[2] R. Farchioni, and G. Grosso, Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids (Springer, Berlin, 2001).

DOI: 10.1007/978-3-642-56425-3

Google Scholar

[3] L. J. Allamandola, S. A. Sandford, and B. Wopenka, Science 237 (4810), 56 (1987).

Google Scholar

[4] H.G. Drickamer, Science 156 1183 (1967).

Google Scholar

[5] S. Block, C.E. Weir, and G.J. Piermarini, Science 169 586 (1970).

Google Scholar

[6] I.Harada, and T. Shimanouchi, J. Chem. Phys. 44, 2016 (1966).

Google Scholar

[7] A.Y. Likhacheva, S. V. Rashchenko and K. D. Litasov, J. Appl. Cryst. 47 984 (2014).

Google Scholar

[8] A.Y. Likhacheva, S. V. Rashchenko, A.D. Chanyshev, T.M. Inerbaev, K.D. Litasov, and D.S. Kilin, J. Chem. Phys. 140, 164508 (2014).

DOI: 10.1063/1.4871741

Google Scholar

[9] B. Schatschneider, S. Monaco, A. Tkatchenko, and J.J. Liang, J. Phys. Chem. A. 117, 8323 (2013).

Google Scholar

[10] J.M.L. Martin, J. E.Yazal, and J. P. Francois¸ J. Phys. Chem. 100 15358 (1996).

Google Scholar

[11] K. Hummer, and C. Ambrosch-Draxl, Phys. Rev. B: Condens. Matter Mater. Phys, 72, 205205 (2005).

Google Scholar

[12] I.A. Fedorov, Y. N. Zhuravlev, and V. P. Berveno, Phys. Chem. Chem. Phys. 13, 5679 (2011).

Google Scholar

[13] K. P. Meletov, Phys. Solid State. 55, 581(2013).

Google Scholar

[14] R. B. Aust, W. H. Bentley, and H. G. Drickamer, J. Chem. Phys. 41, 1856 (1964).

Google Scholar

[15] Q.W. Huang, G.H. Zhong, J. Zhang, X.M. Zhao, C. Zhang, H.Q. Lin, and X.J. Chen, J. Chem. Phys. 140, 114301 (2014).

Google Scholar

[16] T. Kambe, X. He, Y. Takahashi, Y. Yamanari, K. Teranishi, H. Mitamura, S. Shibasaki, K. Tomita, R. Eguchi, H. Goto, Y. Takabayashi, T. Kato, A. Fujiwara, T. Kariyado, H. Aoki, and Y. Kubozono, Phys. Rev. B 86, 214507 (2012).

DOI: 10.1103/physrevb.86.214507

Google Scholar

[17] D.T. Cromer, R. R. Ryan, and D. Schiferl, J. Phys. Chem. 89, 2315 (1985).

Google Scholar

[18] H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).

Google Scholar

[19] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).

Google Scholar

[20] E. R. Lippincott, and E. J. O'Reilly, J. Chem. Phys. 139, 144308 (2013).

Google Scholar

[21] S. Califano, J. Chem. Phys. 23, 238 (1955).

Google Scholar

[22] S. Fanetti, M. Citroni, L. Malavasi, G. A. Artioli, P. Postorino, and R. Bini, J. Phys. Chem. C 117, 5343 (2013).

DOI: 10.1021/jp4006789

Google Scholar

[23] Q.W. Huang, J. Zhang, A. Berlie, Z.X. Qin, X.M. Zhao, J.B. Zhang, L.Y. Tang, J. Liu, C. Zhang, G.H. Zhong, H.Q. Lin, and X.J. Chen, J. Chem. Phys. 139, 104302 (2013).

Google Scholar

[24] X.M. Zhao, J. Zhang, A. Berlie, Z.X. Qin, Q.W. Huang, S. Jiang, J.B. Zhang, L.Y. Tang, J. Liu, C. Zhang, G.H. Zhong, H.Q. Lin, and X.J. Chen, J. Chem. Phys. 139, 144308 (2013).

Google Scholar

[25] J. F. J. Jordan, A. Axmann, H. Egger, and J. Kalus, Phys. Status Solidi A 71, 457 (1982).

Google Scholar

[26] A.I. Kitaigorodsky, Molecular Crystals and Molecules (Academic, New York, 1973).

Google Scholar

[27] V. Coropceanu, R.S. Sánchez-Carrera, P. Paramonov, G.M. Day, and J.L. Brédas, J. Phys. Chem. C, 113 (11), 4679 (2009).

Google Scholar

[28] A.J. Kitaigorodsky, Molekiilkristalle Vol. 177, (Akademie, Berlin, 1979).

Google Scholar