Investigation of Lithium Sorption Efficiency Using SWCNT Functionalized Electrospun Fiber Mats from the Hypersaline Geothermal Brine

Article Preview

Abstract:

Geothermal mining from brines becomes increasingly important with the increasing demand for rare earth elements in various engineering applications. Geothermal fluids contain valuable minerals and metals such as silica, zinc, lithium, and other materials that can be processed to recover these products. Solution mining by nature is challenging because of variable composition as well as the concentration of the interfering ions, particularly calcium and magnesium, and the presence of interfering ions increases the recovery costs requiring additional steps. The aim of this study is the fabrication of single-walled carbon nanotube functionalized electrospun chitosan, poly (methyl methacrylate) (PMMA), and polyacrylonitrile (PAN) fiber mats. Effect of polymer type, dilution factor, and surface modification on the sorption of lithium ( QUOTE ) ions was investigated. The maximum sorption performance was obtained with SWCNT functionalized PAN (15 wt%) fiber mats and they have sorption percentage as 55% at diluted (1/100) brine samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Xu, Y.M. Chen, P.Y. Wan, K. Gasem, K.Y. Wang, T. He, H. Adidharma, M.H. Fan, Extraction of lithium with functionalized lithium ion-sieves, Progress in Materials Science, 84 (2016) 276-313.

DOI: 10.1016/j.pmatsci.2016.09.004

Google Scholar

[2] W. Xiang, S.K. Liang, Z.Y. Zhou, W. Qin, W.Y. Fei, Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium, Hydrometallurgy, 166 (2016) 9-15.

DOI: 10.1016/j.hydromet.2016.08.005

Google Scholar

[3] M.M. Demir, A.Baba, V. Atilla, M.. Inanli, Types of the scaling in hyper saline geothermal system in northwest Turkey, Geothermics, 50 (2014) 1–9.

DOI: 10.1016/j.geothermics.2013.08.003

Google Scholar

[4] S. Nishihama, K. Onishi, K. Yoshizuka, Selective recovery process of lithium from seawater using integrated ion exchange methods, Solvent Extraction and Ion Exchange, 29 (2011) 421-431.

DOI: 10.1080/07366299.2011.573435

Google Scholar

[5] A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibres, Angewandte Chemie-International Edition, 46 (2007) 5670-5703.

DOI: 10.1002/anie.200604646

Google Scholar

[6] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane fibers, Polymer, 43 (2002) 3303-3309.

DOI: 10.1016/s0032-3861(02)00136-2

Google Scholar

[7] W.J. Chung, R.E.C. Torrejos, M.J. Park, E.L. Vivas, L.A. Limjuco, C.P. Lawagon, K.J. Parohinog, S.P. Lee, H.K. Shon, H. Kim, G.M. Nisola, Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves, Chemical Engineering Journal, 309 (2017).

DOI: 10.1016/j.cej.2016.09.133

Google Scholar

[8] Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.-W. Mai, H. Huang, J.B. Goodenough, Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries, Journal of the American Chemical Society, 135 (2013) 16280-16283.

DOI: 10.1021/ja408421n

Google Scholar

[9] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, 2 (2009) 638-654.

DOI: 10.1039/b904116h

Google Scholar

[10] A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial mno2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Letters, 9 (2009) 1002-1006.

DOI: 10.1021/nl803081j

Google Scholar

[11] H. Xia, M. Lai, L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries, Journal of Materials Chemistry, 20 (2010) 6896-6902.

DOI: 10.1039/c0jm00759e

Google Scholar

[12] W. Koh, J.I. Choi, S.G. Lee, W.R. Lee, S.S. Jang, First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system, Carbon, 49 (2011) 286-293.

DOI: 10.1016/j.carbon.2010.09.022

Google Scholar

[13] A. Rashidi, M. Akbarnejad, A. Khodadadi, Y. Mortazavi, A. Ahmadpourd, Single-wall carbon nanotubes synthesized using organic additives to co–mo catalysts supported on nanoporous mgo, Nanotechnology, 18 (2007) 315605.

DOI: 10.1088/0957-4484/18/31/315605

Google Scholar

[14] A.I. Yardimci, S. Yilmaz, Y. Selamet, The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using co-mo/mgo catalyst, Diamond and Related Materials, 60 (2015) 81-86.

DOI: 10.1016/j.diamond.2015.10.025

Google Scholar

[15] M. Yücel, Fabrication of thin layer polymer-based biointerphase for biosensing application, in İzmir Institute of Technology, (2017).

Google Scholar

[16] N. Horzum, E. Boyacı, A.E. Eroglu, T. Shahwan, M.M. Demir, Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations, Biomacromolecules, 11 (2010) 3301-3308.

DOI: 10.1021/bm100755x

Google Scholar

[17] N. Horzum, T. Shahwan, O. Parlak, M.M. Demir, Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow, Chemical Engineering Journal, 213 (2012) 41-49.

DOI: 10.1016/j.cej.2012.09.114

Google Scholar

[18] A. Celik, G. Koc, E. Erdogan, T. Shahwan, A. Baba, M.M. Demir, Use of electrospun fiber mats for the remediation of hypersaline geothermal brine, Desalination and Water Treatment, 62 (2017) 94-100.

DOI: 10.5004/dwt.2017.20151

Google Scholar

[19] H. Hu, B. Zhao, M.E. Itkis, R.C. Haddon, Nitric acid purification of single-walled carbon nanotubes, The Journal of Physical Chemistry B, 107 (2003) 13838-13842.

DOI: 10.1021/jp035719i

Google Scholar

[20] J.-M. Moon, K.H. An, Y.H. Lee, Y.S. Park, D.J. Bae, G.-S. Park, High-yield purification process of singlewalled carbon nanotubes, The Journal of Physical Chemistry B, 105 (2001) 5677-5681.

DOI: 10.1021/jp0102365

Google Scholar

[21] J.J.L. Lee, B.C. Ang, A. Andriyana, M.I. Shariful, M. Amalina, Fabrication of PMMA/zeolite nanofibrous membrane through electrospinning and its adsorption behavior, Journal of Applied Polymer Science, 134 (2017).

DOI: 10.1002/app.44450

Google Scholar

[22] T. Isık, N. Horzum, Ü.H. Yıldız, B. Liedberg, M.M. Demir, Utilization of electrospun polystyrene membranes as a preliminary step for rapid diagnosis, Macromolecular Materials and Engineering, 301 (2016) 827-835.

DOI: 10.1002/mame.201600127

Google Scholar