[1]
A. Falciatore and C. Bowler, Revealing the molecular secrets of marine diatoms, Annu Rev Plant Biol, vol. 53, pp.109-130, (2002).
Google Scholar
[2]
T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, Diatoms as living photonic crystals, Applied Physics B: Lasers and Optics, vol. 78, pp.257-260, (2004).
DOI: 10.1007/s00340-004-1419-4
Google Scholar
[3]
L. E. Antonides, Diatomite, The United States Geological Survey, p.24. 1-24. 6, (1997).
Google Scholar
[4]
J. Robert D. Crangle, Diatomite, 2010 Minerals Yearbook, vol. September 2011, p.22. 1-22. 6, (2010).
Google Scholar
[5]
Tasdemirci A, Yuksel S, Karsu D, et al. Diatom frustule filled epoxy: Experimental and numerical study of the quasi-static and high strain rate compression behavior. Mater Sci Eng A-Struct Mater Prop Microstruct Process 2008; 480: 373–382.
DOI: 10.1016/j.msea.2007.07.037
Google Scholar
[6]
R. Gordon, D. Losic, M. A. Tiffany, S. S. Nagy, and F. A. S. Sterrenburg, The Glass Menagerie: diatoms for novel applications in nanotechnology, Trends in Biotechnology, vol. 27, pp.116-127, (2009).
DOI: 10.1016/j.tibtech.2008.11.003
Google Scholar
[7]
R. Gordon and J. Parkinson, Potential roles for diatomists in nanotechnology, Journal of nanoscience and nanotechnology, vol. 5, pp.35-40, (2005).
DOI: 10.1166/jnn.2005.002
Google Scholar
[8]
N. Almqvist, Y. Delamo, B. L. Smith, N. H. Thomson, A. Bartholdson, R. Lal, et al., Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy, J Microsc, vol. 202, pp.518-32, Jun (2001).
DOI: 10.1046/j.1365-2818.2001.00887.x
Google Scholar
[9]
L. S. Dimas and M. J. Buehler, Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials, Bioinspir Biomim, vol. 7, p.036024, Sep (2012).
DOI: 10.1088/1748-3182/7/3/036024
Google Scholar
[10]
A. P. Garcia, D. Sen, and M. J. Buehler, Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength, Metallurgical and Materials Transactions A, vol. 42, pp.3889-3897, December 01 (2011).
DOI: 10.1007/s11661-010-0477-y
Google Scholar
[11]
C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, et al., Architecture and material properties of diatom shells provide effective mechanical protection, Nature, vol. 421, pp.841-843, 02/20/print (2003).
DOI: 10.1038/nature01416
Google Scholar
[12]
G. Subhash, S. Yao, B. Bellinger, and M. R. Gretz, Investigation of mechanical properties of diatom frustules using nanoindentation, J Nanosci Nanotechnol, vol. 5, pp.50-6, Jan (2005).
DOI: 10.1166/jnn.2005.006
Google Scholar
[13]
Karp-Boss, Lee, Rachel Gueta, and Itay Rousso. Judging Diatoms by Their Cover: Variability in Local Elasticity of Lithodesmium Undulatum Undergoing Cell Division., Ed. Andrew Pelling. PLoS ONE 9. 10 (2014): e109089. PMC. Web. 12 Sept. (2017).
DOI: 10.1371/journal.pone.0109089
Google Scholar
[14]
E. A. Gültürk, M. Güden, and A. Taşdemirci, Calcined and natural frustules filled epoxy matrices: The effect of volume fraction on the tensile and compression behavior, Composites Part B: Engineering, vol. 44, pp.491-500, 2013/01/01/ (2013).
DOI: 10.1016/j.compositesb.2012.03.022
Google Scholar
[15]
D. Zeren and M. Güden, The increased compression strength of an epoxy resin with the addition of heat-treated natural nano-structured diatom frustules, Journal of Composite Materials, vol. 51, pp.1681-1691, (2017).
DOI: 10.1177/0021998316669855
Google Scholar
[16]
K. Kesici. İ. Tüney. D. Zeren. M. Güden. A. Sukatar, Morphological and molecular identifcation of pennate diatoms isolated from Urla, İzmir, coast of the Aegean Sea, Turkish Journal of Biology, vol. 37, pp.530-537, (2013).
DOI: 10.3906/biy-1205-40
Google Scholar