Development of Non-Cadmium I-III-VI Quantum Dots and their Surface Modification for Biomedical Applications

Article Preview

Abstract:

I-III-VI QDs (CuInS2/ZnS or AgInS2/ZnS core/shell structures) possess low toxicity, and are a logical replacement for cadmium-based QDs for biomedical applications. Our synthesis of I-III-VI QDs is based on thermal decomposition of less toxic precursors and can be easily scaled up for mass production for sustainable and reliable imaging and sensing experiments. Through nonstoichiometric composition adjustment, we synthesized I-III-VI QDs with reliable and controllable optical properties, including high QYs and tunable photoluminescence. We also developed new zwitterionic amphiphiles and applied them to encapsulate I-III-VI QDs to achieve colloidal stability in proteinaceous solutions with wide pH/ionic ranges, low non-specific binding, and easily bio-conjugation. On the basis of these developments, we applied our I-III-VI QDs in cellular imaging to to specifically target human brain tumor cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-168

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Albanese, P. Tang, W. Chan, Annual Review of Biomedical Engineering, 2012, 14, 1-16.

Google Scholar

[2] H. Sun, F. Zhang, H. Wei, B. Yang, Journal of Materials Chemistry B, 2013, 1, 6485-6494.

Google Scholar

[3] B. A. Rzigalinski, J. S. Strobl, Toxicology and Applied Pharmacology 2009, 238, 280–288.

Google Scholar

[4] S. Lowe, N. M. O'Brien-Simpson, L. A. Connal, Polymer Chemistry, 2015, 6, 198-212.

Google Scholar

[5] H. Zhong, Z. Bai, B. Zou, Journal of Physical Chemistry Letters, 2012, 3, 3167-3175.

Google Scholar

[6] R. Xie, M. Rutherford, X. Peng, Journal of the American Chemistry Society, 2009, 131, 5691-5697.

Google Scholar

[7] J. Park, S. W. Kim, J. Mater. Chem., 2011, 21, 3745.

Google Scholar

[8] L. D. Trizio, M. Prato, A. Genovese, A. Casu, M. Povia, R. Simonutti, M. J. P. Alcocer, C. D'Andrea, F. Tassone, L. Manna, Chemistry of Materials, 2012, 24, 2400.

DOI: 10.1021/cm301211e

Google Scholar

[9] G. Karakus, Z. Polat, A. Yenidunya, H. Zengin, C. Karakus, Polymer International, 2013, 62, 492-495.

Google Scholar

[10] E. Peng, E. Shi, G. Choo, Y. Sheng, J. M. Xue, New Journal of Chemistry, 2013, 37, 2051-(2060).

Google Scholar

[11] J. Sun, Z. Yu, C. Hong, C. Pan, Macromolecular Rapid Communications, 2012, 33, 811−818.

Google Scholar

[12] J. Yuan, S. Lin, J. Shen, Colloids and Surfaces B: Biointerfaces, 2008, 66, 90-95.

Google Scholar

[13] E. Muro, T. Pons, N. Lequeux, A. Fragola, N. Sanson, Z. Lenkei, B. Dubertret, Journal of the American Chemistry Society, 2010, 132, 4556-4557.

DOI: 10.1021/ja1005493

Google Scholar

[14] V. V. Breus, C. D. Heyes, K. Tron, G. U. Nienhaus, ACS Nano, 2009, 3, 2573–2580.

Google Scholar

[15] H. Choi, S. L Gibbs, J. Lee, S. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V Frangioni, Nature Biotechnology, 2013, 31, 148-153.

DOI: 10.1038/nbt.2468

Google Scholar