[1]
H. Karaca et al., Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy.
DOI: 10.1016/j.actamat.2013.08.048
Google Scholar
[2]
J. Ma, I. Karaman, and R. Noebe, High temperature shape memory alloys,, Int. Mater. Rev., vol. 55, no. 5, p.257–315, (2010).
DOI: 10.1179/095066010x12646898728363
Google Scholar
[3]
Z. K. Lu and G. J. Weng, Martensitic transformation and stress-strain relations of shape-memory alloys,, J. Mech. Phys. Solids, vol. 45, no. 11–12, p.1905–1928, (1997).
DOI: 10.1016/s0022-5096(97)00022-7
Google Scholar
[4]
Z. K. Lu and G. J. Weng, A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals,, Acta Mater., vol. 46, no. 15, p.5423–5433, (1998).
DOI: 10.1016/s1359-6454(98)00203-1
Google Scholar
[5]
C. Collard and T. Ben Zineb, Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model,, Compos. Part B Eng., vol. 43, no. 6, p.2560–2576, (2012).
DOI: 10.1016/j.compositesb.2012.03.015
Google Scholar
[6]
C. Collard, T. Ben Zineb, E. Patoor, and M. O. Ben Salah, Micromechanical analysis of precipitate effects on shape memory alloys behaviour,, Mater. Sci. Eng. A, vol. 481–482, no. 1–2 C, p.366–370, (2008).
DOI: 10.1016/j.msea.2007.05.112
Google Scholar
[7]
J. G. Boyd and D. C. Lagoudas, Shape Memory Composites,, J. Intell. Mater. Syst. Struct., vol. 5, no. May, p.333–346, (1994).
Google Scholar
[8]
J. G. Boyd and D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material,, Int. J. Plast., vol. 12, no. 7, p.843–873, (1996).
DOI: 10.1016/s0749-6419(96)00031-9
Google Scholar
[9]
V. Birman, Properties and response of composite material with spheroidal superelastic shape memory alloy inclusions subject to three-dimensional stress state,, J.Phys.D, vol. 43, no. 22, p.225402--, (2010).
DOI: 10.1088/0022-3727/43/22/225402
Google Scholar
[10]
T. Baxevanis, A. Cox, and D. Lagoudas, Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys,, Acta Mech., vol. 225, no. 4–5, p.1167–1185, (2014).
DOI: 10.1007/s00707-013-1071-3
Google Scholar
[11]
A. Cox, B. Franco, S. Wang, T. Baxevanis, I. Karaman, and D. C. Lagoudas, Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi,, Shape Mem. Superelasticity, (2017).
DOI: 10.1007/s40830-016-0096-6
Google Scholar
[12]
J. K. Joy, A. Solomou, T. Baxevanis, and D. C. Lagoudas, Predicting the constitutive response of precipitation hardened NiTiHf,, vol. 10165, p. 101650F, (2017).
DOI: 10.1117/12.2263501
Google Scholar
[13]
D. Lagoudas, D. Hartl, Y. Chemisky, L. MacHado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys,, Int. J. Plast., vol. 32–33, p.155–183, (2012).
DOI: 10.1016/j.ijplas.2011.10.009
Google Scholar
[14]
Y. Tong, F. Chen, B. Tian, L. Li, and Y. Zheng, Microstructure and martensitic transformation of Ti49Ni51 - xHfx high temperature shape memory alloys,, Mater. Lett., vol. 63, no. 21, p.1869–1871, (2009).
DOI: 10.1016/j.matlet.2009.05.069
Google Scholar
[15]
J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. X. Wagner, and G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,, Acta Mater., vol. 58, no. 9, p.3444–3458, (2010).
DOI: 10.1016/j.actamat.2010.02.019
Google Scholar
[16]
L. Bataillard, J.-E. Bidaux, and R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations,, Philos. Mag. A, vol. 78, no. 2, p.327–344, (1998).
DOI: 10.1080/01418619808241907
Google Scholar
[17]
E. Hornbogen, The effect of variables on martensitic transformation temperatures,, Acta Metall., vol. 33, no. 4, p.595–601, (1985).
DOI: 10.1016/0001-6160(85)90024-0
Google Scholar
[18]
A. Evirgen, I. Karaman, R. Santamarta, J. Pons, and R. D. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy,, Acta Mater., vol. 83, p.48–60, (2015).
DOI: 10.1016/j.actamat.2014.09.027
Google Scholar
[19]
A. EVIRGEN and I. Karaman, MICROSTRUCTURAL CHARACTERIZATION AND SHAPE MEMORY RESPONSE OF Ni-RICH NiTiHf AND NiTiZr HIGH TEMPERATURE SHAPE MEMORY ALLOYS,, Texas A&M, (2014).
DOI: 10.1016/j.actamat.2016.08.065
Google Scholar
[20]
X. Chen, From Nano-precipitates to Macroscale Composites : How Inclusion-Matrix Interactions Influence the Behaviors of Shape Memory Alloys and Structures,, The Ohio State University, (2015).
Google Scholar
[21]
A. Cox, B. Franco, T. Baxevanis, I. Karaman, and D. C. Lagoudas, Predictive modeling of the constitutive response of precipitation hardened Ni-rich NiTi shape memory alloys.
DOI: 10.1007/s40830-016-0096-6
Google Scholar
[22]
L. Casalena et al., Revealing Transformation and Deformation Mechanisms in NiTiHf and NiTiAu High Temperature Shape Memory Alloys Through Microstructural Investigations,, vol. 22, no. Suppl 3, p.1954–1955, (2016).
DOI: 10.1017/s1431927616010618
Google Scholar
[23]
R. Santamarta et al., TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys,, Acta Mater., vol. 61, no. 16, p.6191–6206, (2013).
DOI: 10.1016/j.actamat.2013.06.057
Google Scholar
[24]
F. Yang et al., Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy,, Acta Mater., vol. 61, no. 9, p.3335–3346, (2013).
DOI: 10.1016/j.actamat.2013.02.023
Google Scholar