Micromechanical Modeling of Precipitation Hardened NiTiHf

Article Preview

Abstract:

Actuation response of NiTiHf high temperature SMAs can be enhanced by means of suitable heat treatment on the material through precipitation hardening. Heat treatments can be chosen carefully to improve the performance of the NiTiHf SMAs in order to meet the requirements of targeted applications to design more robust and efficient high temperature solid-state actuator systems. The present work aims to develop a novel approach to model and predict the behavior of heat-treated NiTiHf SMAs. The predictions of the thermomechanical response of NiTiHf SMAs are based on Representative Volume Elements (RVEs). The precipitated NiTiHf SMA is modeled as a composite consist of of thermo-elastic non-transforming precipitates and a polycrystalline SMA matrix. The structural effect of precipitates and the effect of Hf-concentration gradient resulted from Hf depletion during precipitation are included. The composition distribution resulting from the elemental depletion and the transformation temperature distributions in the SMA matrix are related. In the present work, these relations are developed from experimental measurements on several NiTiHf compositions. Thermo-mechanical responses of Ni50.3Ti29.7Hf20 heat-treated at 500°C for 48h at different loading conditions are predicted and the correlations with experimental results demonstrate the validity of the proposed framework.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-156

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Karaca et al., Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy.

DOI: 10.1016/j.actamat.2013.08.048

Google Scholar

[2] J. Ma, I. Karaman, and R. Noebe, High temperature shape memory alloys,, Int. Mater. Rev., vol. 55, no. 5, p.257–315, (2010).

DOI: 10.1179/095066010x12646898728363

Google Scholar

[3] Z. K. Lu and G. J. Weng, Martensitic transformation and stress-strain relations of shape-memory alloys,, J. Mech. Phys. Solids, vol. 45, no. 11–12, p.1905–1928, (1997).

DOI: 10.1016/s0022-5096(97)00022-7

Google Scholar

[4] Z. K. Lu and G. J. Weng, A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals,, Acta Mater., vol. 46, no. 15, p.5423–5433, (1998).

DOI: 10.1016/s1359-6454(98)00203-1

Google Scholar

[5] C. Collard and T. Ben Zineb, Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model,, Compos. Part B Eng., vol. 43, no. 6, p.2560–2576, (2012).

DOI: 10.1016/j.compositesb.2012.03.015

Google Scholar

[6] C. Collard, T. Ben Zineb, E. Patoor, and M. O. Ben Salah, Micromechanical analysis of precipitate effects on shape memory alloys behaviour,, Mater. Sci. Eng. A, vol. 481–482, no. 1–2 C, p.366–370, (2008).

DOI: 10.1016/j.msea.2007.05.112

Google Scholar

[7] J. G. Boyd and D. C. Lagoudas, Shape Memory Composites,, J. Intell. Mater. Syst. Struct., vol. 5, no. May, p.333–346, (1994).

Google Scholar

[8] J. G. Boyd and D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material,, Int. J. Plast., vol. 12, no. 7, p.843–873, (1996).

DOI: 10.1016/s0749-6419(96)00031-9

Google Scholar

[9] V. Birman, Properties and response of composite material with spheroidal superelastic shape memory alloy inclusions subject to three-dimensional stress state,, J.Phys.D, vol. 43, no. 22, p.225402--, (2010).

DOI: 10.1088/0022-3727/43/22/225402

Google Scholar

[10] T. Baxevanis, A. Cox, and D. Lagoudas, Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys,, Acta Mech., vol. 225, no. 4–5, p.1167–1185, (2014).

DOI: 10.1007/s00707-013-1071-3

Google Scholar

[11] A. Cox, B. Franco, S. Wang, T. Baxevanis, I. Karaman, and D. C. Lagoudas, Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi,, Shape Mem. Superelasticity, (2017).

DOI: 10.1007/s40830-016-0096-6

Google Scholar

[12] J. K. Joy, A. Solomou, T. Baxevanis, and D. C. Lagoudas, Predicting the constitutive response of precipitation hardened NiTiHf,, vol. 10165, p. 101650F, (2017).

DOI: 10.1117/12.2263501

Google Scholar

[13] D. Lagoudas, D. Hartl, Y. Chemisky, L. MacHado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys,, Int. J. Plast., vol. 32–33, p.155–183, (2012).

DOI: 10.1016/j.ijplas.2011.10.009

Google Scholar

[14] Y. Tong, F. Chen, B. Tian, L. Li, and Y. Zheng, Microstructure and martensitic transformation of Ti49Ni51 - xHfx high temperature shape memory alloys,, Mater. Lett., vol. 63, no. 21, p.1869–1871, (2009).

DOI: 10.1016/j.matlet.2009.05.069

Google Scholar

[15] J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. X. Wagner, and G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,, Acta Mater., vol. 58, no. 9, p.3444–3458, (2010).

DOI: 10.1016/j.actamat.2010.02.019

Google Scholar

[16] L. Bataillard, J.-E. Bidaux, and R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations,, Philos. Mag. A, vol. 78, no. 2, p.327–344, (1998).

DOI: 10.1080/01418619808241907

Google Scholar

[17] E. Hornbogen, The effect of variables on martensitic transformation temperatures,, Acta Metall., vol. 33, no. 4, p.595–601, (1985).

DOI: 10.1016/0001-6160(85)90024-0

Google Scholar

[18] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, and R. D. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy,, Acta Mater., vol. 83, p.48–60, (2015).

DOI: 10.1016/j.actamat.2014.09.027

Google Scholar

[19] A. EVIRGEN and I. Karaman, MICROSTRUCTURAL CHARACTERIZATION AND SHAPE MEMORY RESPONSE OF Ni-RICH NiTiHf AND NiTiZr HIGH TEMPERATURE SHAPE MEMORY ALLOYS,, Texas A&M, (2014).

DOI: 10.1016/j.actamat.2016.08.065

Google Scholar

[20] X. Chen, From Nano-precipitates to Macroscale Composites : How Inclusion-Matrix Interactions Influence the Behaviors of Shape Memory Alloys and Structures,, The Ohio State University, (2015).

Google Scholar

[21] A. Cox, B. Franco, T. Baxevanis, I. Karaman, and D. C. Lagoudas, Predictive modeling of the constitutive response of precipitation hardened Ni-rich NiTi shape memory alloys.

DOI: 10.1007/s40830-016-0096-6

Google Scholar

[22] L. Casalena et al., Revealing Transformation and Deformation Mechanisms in NiTiHf and NiTiAu High Temperature Shape Memory Alloys Through Microstructural Investigations,, vol. 22, no. Suppl 3, p.1954–1955, (2016).

DOI: 10.1017/s1431927616010618

Google Scholar

[23] R. Santamarta et al., TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys,, Acta Mater., vol. 61, no. 16, p.6191–6206, (2013).

DOI: 10.1016/j.actamat.2013.06.057

Google Scholar

[24] F. Yang et al., Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy,, Acta Mater., vol. 61, no. 9, p.3335–3346, (2013).

DOI: 10.1016/j.actamat.2013.02.023

Google Scholar