[1]
L. Várkoly, et al., Únavové porušovanie materiálov (Fatigue damage of materials). EDIS, Žilina, 1998. (in Slovak).
Google Scholar
[2]
N.E. Dowling, Mechanical Behavior of Materials. Fourt edition. Pearson Education Limited, 2013, 954 p.
Google Scholar
[3]
Ch. Lalanne, Mechanical Vibration and Shock. Fatigue Damage. Volume IV. CRC Press. New York. 2002. 307 p.
Google Scholar
[4]
F. Ellyin. Fatigue Damage, Crack Growth and Life Prediction. Springer Netherlands. (1997).
Google Scholar
[5]
R., Moravčík, M., Hazlinger, Degradation processes and Life-Time prediction of Materials. Vydavatelství a nakladatelství Aleš Čeněk, s.r.o., Plzeň, 2017, 310 p.
Google Scholar
[6]
M. Hazlinger, Analýza súčiastok poškodených únavou. (Analysis of a fatigue damaged components). In. Materials Science and Technology [online], Vol. 6, No. 3, 2006. Available on: <http://mtf.stuba.sk/casopis/obsah1.html>.
Google Scholar
[7]
T. Szmolka, M. Hazlinger, K. Kocúrová, Damaged spindle analysis of motorcycle´s wheel. In: Letná škola únavy materiálov 2010 (Summer school of Materials Fatigue 2010): Vol. X. ŽU Žilina, 2010. p.194 ÷ 197.
Google Scholar
[8]
O. Bokůvka, G. Nicoletto, M. Guagliano, L. Kunz, P. Palček, F. Nový, M. Chalupová, Fatigue of materials at low and high frequency loading. EDIS, Žilina, (2014).
Google Scholar
[9]
A. Sorg, J. Utzinger, B. Seufert, M. Oechsner, Fatigue life estimation of screws under multiaxial loading using a local approach. International Journal of Fatigue. (2017) Vol. 104.pp.43-51.
DOI: 10.1016/j.ijfatigue.2017.06.034
Google Scholar
[10]
C. Fischer, W. Fricke, C.M. Rizzo, Fatigue tests of notched specimens made from butt joints at steel. Fatigue & Fracture of Engineering Materials & Structures. Vol. 39. Issue: 12 (2016) pp.1526-1541.
DOI: 10.1111/ffe.12473
Google Scholar
[11]
D. Wagner, C. Wang, Z. Huang, C. Bathias, Surface crack initiation mechanism for body centered cubic materials in the gigacycle fatigue domain. International Journal of Fatigue. Vol. 93, Part: 2, Special Issue SI (2016), pp.292-300.
DOI: 10.1016/j.ijfatigue.2016.05.036
Google Scholar
[12]
Y. Yamashita, Y. Murakami, Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel. International Journal of Fatigue. Vol. 93, Part: 2, Special Issue SI (2016), pp.406-414.
DOI: 10.1016/j.ijfatigue.2016.04.016
Google Scholar
[13]
XJ. Wu, GC. Quan, R. MacNeil, Z. Zhang, XY. Liu, C. Sloss, Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. Vol. 46A. Issue 6 (2015).
DOI: 10.1007/s11661-015-2873-9
Google Scholar
[14]
LH. Zhao, SL. Zheng, JZ. Feng, Failure mode analysis of torsion beam rear suspension under service conditions. Engineering Failure Analysis. Vol 36 (2014). pp.39-48.
DOI: 10.1016/j.engfailanal.2013.09.008
Google Scholar