Analysis of a Broken Pin on the Brake System of a Car Trailer

Article Preview

Abstract:

Fatigue of materials is the degradation process that results from the cyclical dynamic loading of components in combination with other internal or external factors, e.g. corrosion, defects, etc. This paper mainly focuses on the analysis of the causes leading to the damage of a pin in a car trailer´s braking system. The damage of the pin was caused by a few, mutually independent, parameters. Several techniques such as macroscopy, microscopy (light, SEM) and dimension measurement were used for the damage analysis. The material and geometry of the pin were the main issues identified leading to the failure of the part in question.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

420-427

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Várkoly, et al., Únavové porušovanie materiálov (Fatigue damage of materials). EDIS, Žilina, 1998. (in Slovak).

Google Scholar

[2] N.E. Dowling, Mechanical Behavior of Materials. Fourt edition. Pearson Education Limited, 2013, 954 p.

Google Scholar

[3] Ch. Lalanne, Mechanical Vibration and Shock. Fatigue Damage. Volume IV. CRC Press. New York. 2002. 307 p.

Google Scholar

[4] F. Ellyin. Fatigue Damage, Crack Growth and Life Prediction. Springer Netherlands. (1997).

Google Scholar

[5] R., Moravčík, M., Hazlinger, Degradation processes and Life-Time prediction of Materials. Vydavatelství a nakladatelství Aleš Čeněk, s.r.o., Plzeň, 2017, 310 p.

Google Scholar

[6] M. Hazlinger, Analýza súčiastok poškodených únavou. (Analysis of a fatigue damaged components). In. Materials Science and Technology [online], Vol. 6, No. 3, 2006. Available on: <http://mtf.stuba.sk/casopis/obsah1.html>.

Google Scholar

[7] T. Szmolka, M. Hazlinger, K. Kocúrová, Damaged spindle analysis of motorcycle´s wheel. In: Letná škola únavy materiálov 2010 (Summer school of Materials Fatigue 2010): Vol. X. ŽU Žilina, 2010. p.194 ÷ 197.

Google Scholar

[8] O. Bokůvka, G. Nicoletto, M. Guagliano, L. Kunz, P. Palček, F. Nový, M. Chalupová, Fatigue of materials at low and high frequency loading. EDIS, Žilina, (2014).

Google Scholar

[9] A. Sorg, J. Utzinger, B. Seufert, M. Oechsner, Fatigue life estimation of screws under multiaxial loading using a local approach. International Journal of Fatigue. (2017) Vol. 104.pp.43-51.

DOI: 10.1016/j.ijfatigue.2017.06.034

Google Scholar

[10] C. Fischer, W. Fricke, C.M. Rizzo, Fatigue tests of notched specimens made from butt joints at steel. Fatigue & Fracture of Engineering Materials & Structures. Vol. 39. Issue: 12 (2016) pp.1526-1541.

DOI: 10.1111/ffe.12473

Google Scholar

[11] D. Wagner, C. Wang, Z. Huang, C. Bathias, Surface crack initiation mechanism for body centered cubic materials in the gigacycle fatigue domain. International Journal of Fatigue. Vol. 93, Part: 2, Special Issue SI (2016), pp.292-300.

DOI: 10.1016/j.ijfatigue.2016.05.036

Google Scholar

[12] Y. Yamashita, Y. Murakami, Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel. International Journal of Fatigue. Vol. 93, Part: 2, Special Issue SI (2016), pp.406-414.

DOI: 10.1016/j.ijfatigue.2016.04.016

Google Scholar

[13] XJ. Wu, GC. Quan, R. MacNeil, Z. Zhang, XY. Liu, C. Sloss, Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. Vol. 46A. Issue 6 (2015).

DOI: 10.1007/s11661-015-2873-9

Google Scholar

[14] LH. Zhao, SL. Zheng, JZ. Feng, Failure mode analysis of torsion beam rear suspension under service conditions. Engineering Failure Analysis. Vol 36 (2014). pp.39-48.

DOI: 10.1016/j.engfailanal.2013.09.008

Google Scholar