Method of Evaluation of the Properties of Thin Steel Sheets by Springback Test

Article Preview

Abstract:

Production of thin packaging sheets has gone through significant changes in recent years. Thickness of thin packaging sheets has decreased from 0.24mm down to 0.14 – 0.18mm due to the material saving, and the thickness of tin coating layer has decreased as well. Thin packaging sheets with the thickness lower than 0.18mm are produced with so called double reduction. Materials produced with this method possess higher strength properties and lower plastic properties. There exist several tests for examination of strength and plastic properties. Requirements of the processors of these sheets are that these tests are simple, without a complicated production of specimens, and easily repeatable. Exactly because of these reasons, the springback test is used for evaluation of double reduced packaging sheets by many processors from various countries. This contribution compares properties of double reduced thin packaging sheets obtained with the springback test, uniaxial tensile test and biaxial tensile test. Goal of this comparison is to objectify mechanical and plastic properties of packaging sheets obtained with the individual tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-378

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Apeal, Oficiálna stránka asociácie európskych výrobcov ocele pre výrobu obalových materiálov Dostupné na internete: <http: /www. apeal. org/en/apeal/who-we-are>.

Google Scholar

[2] V. Machek, Tenké ocelové pásy a plechy valcované za studena, STNL, Nakladatelství technické literatury, Praha, (1987).

Google Scholar

[3] J. Majerníková, Medzné deformácie tenkých obalových plechov pri rôznych napäťovo-deformačných stavoch. Dizertačná práca, Košice, (2008).

Google Scholar

[4] F. Stachowicz, Effects of microstructure on the mechanical properties and limit strains in uniaxial and biaxial stretching, Journal of M.W.T., 19, (1989), 305-317.

DOI: 10.1016/0378-3804(89)90080-6

Google Scholar

[5] E. Spišák, J. Majerníková, Analysis of variance of mechanical properties of sheets as the input parameters for simulation ofprocesses, Acta Metallurgica Slovaca. Roč. 18, č. 2-3 (2013) 109-116.

Google Scholar

[6] X. Wang, Z. Zhu, F. Cai, H. Li, Effects of continuous annealing process on microstructure and properties of electrolytic tinplate, Heat Treatment of Metals. Vol. 38 (6), (2013) 49-54.

Google Scholar

[7] B. Wang, Q.D. Zhang, M. Yu, X.F. Zhang, G.H. Ni, Description and Control of Tin Plate Surface Visual Quality, Advanced Materials Research. Vol. 145 (2010) 510-515.

DOI: 10.4028/www.scientific.net/amr.145.510

Google Scholar

[8] E. Spišák, J. Slota, J. Majerníková, The evaluation of mechanical properties of tinplates as input parameters for simulation of deep drawing processes, Metalurgija. Vol. 49, No. 2 (2010) 528-532.

Google Scholar

[9] P.V. Makarov, Simulation of elastic-plastic deformation and fracture of materials at micro-, meso- and macrolevels, Theoretical and Applied Fracture Mechanics, 37, (2001), 183-244.

DOI: 10.1016/s0167-8442(01)00078-7

Google Scholar

[10] D. Gade, Tribological behaviour of tinplate during ironing, Metal buletin and Tinplate Technology, 8th International Tinplate Conference, Paris (2004).

Google Scholar

[11] B. Barisic, T. Pepelnjak, K. Kuzman, Numerical-stochastic modeling and simulation of deep drawing tinplates rings, Advanced Materials Research, 6-8, (2005), 329-336.

Google Scholar

[12] E. Spišák, J. Slota, J. Majerníková, Analýza priebehu deformácie jednoducho a dvakrát redukovaných obalových plechov, Chemické listy. Vol. 105, no. S (2011) 485-487.

Google Scholar

[13] E. Spišák, J. Slota, J. Majerníková, Ľ. Kaščák, P. Malega, Inhomogeneous plastic deformation of tinplates under uniaxial stress state, Chemické listy. Vol. 106, no. Symposia (2012) 537-540.

Google Scholar

[14] S. Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology. Fourth Ed. Prentice Hall. Upper Saddle River, NJ USA. (2001).

Google Scholar

[15] J. Hilden, K. Lewis, A. Meamaripour, Selvaduray G. Measurement of Springback Angle in Sheet Bending. Submitted to 11th Annual National Educators' Workshop. San Jose State University, Department of Materials Engineering, San Jose, CA 95192-0086, USA.

DOI: 10.5614/ejgta.2019.7.1.1

Google Scholar