Numerical Biaxial Tensile and Tension-Compression Tests of Aluminum Alloy Sheet Using Crystal Plasticity Finite Element Method

Article Preview

Abstract:

This paper presents the results of the numerical multi-axial material tests for predicting elastoplastic deformation behavior of aluminum alloy sheets under equi-biaxial tension and in-plane tension-compression stress states. In this study, we have performed the numerical biaxial tensile and tension-compression tests of a 5000-series aluminum alloy sheet using the crystal plasticity finite element method based on the mathematical homogenization method which has been developed by the previous studies. We found that the true stress-logarithmic plastic strain (SS) curves calculated by the numerical biaxial tensile test slightly deviate from those measured by the biaxial tensile tests using a cruciform specimen. On the other hand, the results of the numerical tension-compression test demonstrated that the predicted SS curves shows a reasonable agreement with those obtained by the experiment using the biaxial stress-testing machine with comb-shaped dies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plasticity, 23 (2007), 385-419.

DOI: 10.1016/j.ijplas.2006.06.003

Google Scholar

[2] T. Kuwabara, F. Sugawara, Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, Int. J. Plasticity, 45 (2013), 103-118.

DOI: 10.1016/j.ijplas.2012.12.003

Google Scholar

[3] T. Kuwabara, Y. Horiuchi, N. Uema, J. Ziegelheimova, Material testing method of applying in-plane combined tension-compression stresses to sheet specimen, J. Jpn. Soc. Tech. Plast., 48 (2007), 630-634.

DOI: 10.9773/sosei.48.630

Google Scholar

[4] F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. –H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets-part 1: theory, Int. J. Plasticity, 19 (2003), 1297-2319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[5] K. Hashimoto, A. Yamanaka, J. Kawaguchi, T. Sakurai, T. Kuwabara, Biaxial tensile deformation simulation of 5000 series aluminum alloy sheet using crystal plasticity finite element method based on homogenization method and its experimental validation, J. Jpn. Inst. Light Met., 65 (2015).

DOI: 10.2464/jilm.65.196

Google Scholar

[6] A. Yamanaka, Identification of Yield Function for 5000 series aluminum alloy sheet by numerical biaxial tensile testing using homogenized crystal plasticity finite element method, Contributed Papers from MS&T2015, (2015), 603-609.

DOI: 10.4028/www.scientific.net/msf.920.187

Google Scholar

[7] A. Yamanaka, Y. Ishii, T. Hakoyama, P. Eyckens, T. Kuwabara, Numerical biaxial tensile test for sheet metal forming simulation of aluminum alloy sheets based on the homogeneous crystal plasticity finite element method, J. Phys: Conference Series, 734 (2016).

DOI: 10.1088/1742-6596/734/3/032005

Google Scholar

[8] D. Peirce, R. J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metal., 30 (1983), 1087-1119.

DOI: 10.1016/0001-6160(82)90005-0

Google Scholar

[9] J. Pan and J.R. Rice, Rate sensitivity of plastic flow and implications for yield-surface vertices, Int. J. Solid Struct., 19 (1983), 973-987.

DOI: 10.1016/0020-7683(83)90023-9

Google Scholar

[10] S. Graff, W. Brocks, D. Steglich, Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plasticity, 23 (2007), 1957-(1978).

DOI: 10.1016/j.ijplas.2007.07.009

Google Scholar

[11] J. M. Guedes, N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element method, Comput. Meth. Appl. Mech. Eng., 83 (1990) 143-198.

DOI: 10.1016/0045-7825(90)90148-f

Google Scholar

[12] T. Kuwabara, S. Ikeda, K. Kuroda, Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Proc. Technol., 80-81 (1998), 517-523.

DOI: 10.1016/s0924-0136(98)00155-1

Google Scholar