Ideal Flow Theory of Pressure-Dependent Materials for Design of Metal Forming Processes

Article Preview

Abstract:

The ideal flow theory for pressure-dependent materials is used to calculate an ideal die for plane strain extrusion/drawing. In particular, the double slip and rotation and double shearing model are adopted. Comparison with the available ideal flow solution for pressure – independent material is made. It is shown that the die for pressure-dependent material is shorter than that for pressure-independent material. Moreover, the angle of internal friction has an effect of the distribution of contact pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Richmond, S. Alexandrov, The theory of general and ideal plastic deformations of Tresca solids. Acta Mech. 158(1-2) (2002) 33-42.

DOI: 10.1007/bf01463167

Google Scholar

[2] R. Hill, Ideal forming operations for perfectly plastic solids, J. Mech. Phys. Solids 15 (1967) 223-227.

DOI: 10.1016/0022-5096(67)90034-8

Google Scholar

[3] O. Richmond, Theory of Streamlined Dies for Drawing and Extrusion, in: F. P. J. Rimrott, J. Schwaighofer (Eds.), Mechanics of the Solid State, Toronto: University of Toronto Press, 1968, pp.154-167.

DOI: 10.3138/9781487575199-014

Google Scholar

[4] O. Richmond, M. L. Devenpeck, A die profile for maximum efficiency in strip drawing, in: R. M. Rosenberg (Ed.) Proc. 4th. U.S. Natl. Congr. Appl. Mech. Vol.2. New York: ASME, 1962, pp.1053-1057.

Google Scholar

[5] O. Richmond, H. L. Morrison, Streamlined wire drawing dies of minimum length, J. Mech. Phys. Solids 15 (1967) 195-203.

DOI: 10.1016/0022-5096(67)90032-4

Google Scholar

[6] K. Chung, S. Alexandrov, Ideal flow in plasticity, Appl. Mech. Rev. 60 (2007) 316-335.

Google Scholar

[7] F. Barlat, K. Chung, O. Richmond, Anisotropic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming, Metall. Mater. Trans. A 25 (1994) 1209-1216.

DOI: 10.1007/bf02652295

Google Scholar

[8] K. Chung, F. Barlat, J. C. Brem, D. J. Lege, O. Richmond, Blank shape design for a planar anisotropic sheet based on ideal sheet forming design theory and FEM analysis, Int. J. Mech. Sci. 39 (1997) 105-120.

DOI: 10.1016/0020-7403(96)00007-0

Google Scholar

[9] S. H. Park, J. W. Yoon, D. Y. Yang, Y. H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, Int. J. Mech. Sci. 41 (1999) 1217-1232.

DOI: 10.1016/s0020-7403(98)00084-8

Google Scholar

[10] S. Alexandrov, Y. Mustafa, E. Lyamina, Steady planar ideal flow of anisotropic materials. Meccanica 51(9) (2016) 2235-2241.

DOI: 10.1007/s11012-016-0362-x

Google Scholar

[11] I. F. Collins, S. A. Meguid, On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip, ASME J. Appl. Mech. 44 (1977) 271-278.

DOI: 10.1115/1.3424037

Google Scholar

[12] J.R. Rice, Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids 21, (1973) 63–74.

DOI: 10.1016/0022-5096(73)90030-6

Google Scholar

[13] S. Alexandrov, W. Jeong, A Method of Analysis for Planar Ideal Plastic Flows of Anisotropic Materials, Acta Mech. (2017) https://doi.org/10.1007/s00707-017-1915-3.

DOI: 10.1007/s00707-017-1915-3

Google Scholar

[14] W. A. Spitzig, R .J. Sober and O. Richmond, The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory, Metallurg. Trans. 7A (1976) pp.1703-1710.

DOI: 10.1007/bf02817888

Google Scholar

[15] A. S. Kao, H. A. Kuhn, W. A. Spitzig, and O. Richmond, Influence of Superimposed Hydrostatic Pressure on Bending Fracture and Formability of a Low Carbon Steel Containing Globular Sulfides, Trans. ASME J. Eng. Mater. Technol. 112 (1990) pp.26-30.

DOI: 10.1115/1.2903182

Google Scholar

[16] C. D. Wilson, A Critical Reexamination of Classical Metal Plasticity, Trans. ASME J. Appl. Mech. 69 (2002) pp.63-68.

DOI: 10.1115/1.1491578

Google Scholar

[17] P. S. Liu, Mechanical Behaviors of Porous Metals Under Biaxial Tensile Loads, Mater. Sci. Eng. A422 (2006) pp.176-183.

Google Scholar

[18] D. Harris, A hyperbolic augmented elasto-plastic model for pressure-dependent yield, Acta Mech. 225 (2014) 2277-2299.

DOI: 10.1007/s00707-014-1129-x

Google Scholar

[19] S. Alexandrov and D. Harris, An exact solution for a model of pressure-dependent plasticity in an un-steady plane strain process, Eur. J.Mech.-A/Solids 29 (2010) 966-975.

DOI: 10.1016/j.euromechsol.2010.04.002

Google Scholar

[20] S. Alexandrov, Steady planar ideal plastic flows for the double slip and rotation model, in: M. Vandamme, P. Dangla, J.-M. Pereira, S. Ghabezloo (Eds.), Proc. 6th Biot Conf. Poromechanics (Poromechanics VI), 2017, pp.967-971.

DOI: 10.1061/9780784480779.120

Google Scholar

[21] A.J.M. Spencer, A theory of the kinematics of ideal soils under plane strain conditions, J. Mech. Phys. Solids 12 (1964) 337-351.

DOI: 10.1016/0022-5096(64)90029-8

Google Scholar

[22] R. Hill, The mathematical theory of plasticity, Oxford, Clarendon Press, (1950).

Google Scholar