[1]
B.N. Olson, K.B. Moore, and G.R. Simula, Potential for Practical Applications of Ausforming Austempered Ductile Iron, AFS Trans., 111, (2002) 965–982.
Google Scholar
[2]
M.M. Cisneros-Guerrer, R.E. Campos-Cambranis, M. Castro-Román, and M.J. Pérez-López, Austempering Kinetics in Cu-Mo Alloyed Ductile Iron: A Dilatometric Study, Adv. Mater. Res., 4-5 (1997) 415–420.
DOI: 10.4028/www.scientific.net/amr.4-5.415
Google Scholar
[3]
M.M. Cisneros, M.J. Pérez, R.E. Campos, and E. Valdés, The role of Cu, Mo and Ni on the kinetics of the bainitic reaction during the austempering of ductile irons, Int. J. Cast Met. Res. 11 (1999) 425–430.
DOI: 10.1080/13640461.1999.11819311
Google Scholar
[4]
D.J. Moore, J.R. Parolini, and K.B. Rundman, Effect of manganese on structure and properties of austempered ductile iron: a processing window concept, AFS Trans., 111 (2002) 911–930.
Google Scholar
[5]
D. Venugopalan, A kinetic model of the γ → α + Gr eutectoid transformation in spheroidal graphite cast irons, Metall. Trans. A, 21 (1990) 913–918.
DOI: 10.1007/bf02656575
Google Scholar
[6]
K.F. Laneri, J. Desimoni, R.C. Mercader, R.W. Gregorutti, and J.L. Sarutti, Thermal Dependence of Austempering TransformationKinetics of Compacted Graphite Cast Iron, Metall. Mater. Trans. A, 32 (2001) 51–58.
DOI: 10.1007/s11661-001-0250-3
Google Scholar
[7]
S.M. Butorabi and A.A. Fallah, Austempering kinetics of low carbon-aluminium cast iron, AFS Trans., 105 (1997) 757–761.
Google Scholar
[8]
K.L. Hayrynen and K.R. Brandenberg: Carbidic Austempered Ductile Iron ( CADI)- the New Wear Material, AFS Trans., 111 (2003) 845–850.
Google Scholar
[9]
J. Mallia and M. Grech, Efect of silicon content on impact properties of austempered ductile iron, Mater. Sci. Technol., 13 (1997) 408–414.
DOI: 10.1179/mst.1997.13.5.408
Google Scholar
[10]
N. Darwish and R. Elliott, Austempering of low manganese ductile irons: part 1 processing window, Mater. Sci. Technol., 9 (1993) 882–889.
DOI: 10.1179/mst.1993.9.10.882
Google Scholar
[11]
S. Biswas, Ch. Monroe, and T. Prucha, Use of Published Experimental Results to Validate Approaches to Gray and Ductile Iron Mechanical Properties Prediction, Int. J. Met. (2017) 1–19.
DOI: 10.1007/s40962-016-0126-3
Google Scholar
[12]
F. Zanardi, Fatigue properties and machinability of ADI, Metall. Ital. 10 (2005) 27–32.
Google Scholar
[13]
J.R. Keough, K.L. Hayrynen, and G.L. Pioszak, Designing with Austempered Ductile Iron (ADI), AFS Procedings 10 (2010) 1–15.
Google Scholar
[14]
F. Zanardi, Machinable ADI in Italy, AFS Trans. 113 (2005) 835–847.
Google Scholar
[15]
M. Górny, E. Tyrała, and H.F. Lopez, Effect of Copper and Nickel on the Transformation Kinetics of Austempered Ductile Iron, J. Mater. Eng. Perform. 23 (2014) 3505–3510.
DOI: 10.1007/s11665-014-1167-5
Google Scholar
[16]
U. Batra, S. Ray, and S.R. Prabhakar, The influence of nickel and copper on the austempering of ductile iron, J. Mater. Eng. Perform. 13 (2004) 64–68.
DOI: 10.1361/10599490417515
Google Scholar
[17]
K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, and F. Kurosawa, Precipitation Hardening in Fe-Cu Binary and Quaternary Alloys, ISIJ Int. 34 (1994) 359–65.
DOI: 10.2355/isijinternational.34.359
Google Scholar
[18]
M. Tsujikawa, N. Matsumoto, K. Nakamoto, and Y. Michiura, Pearlite Stabilisation by Copper on Ductile Cast Iron, Key Eng. Mater. 457 (2010) 151–156.
DOI: 10.4028/www.scientific.net/kem.457.151
Google Scholar
[19]
M. Nili-Ahmadabadi and M. Mosallaiee-Pour, Homogenization of ductile iron using partialmelting aided by modeling, Mater. Sci. Eng. A 373 (2004) 309–14.
DOI: 10.1016/j.msea.2004.02.004
Google Scholar
[20]
O. Erić, D. Rajnović, S. Zec, L. Sidjanin, and M.T. Jovanović, Microstructure and fracture of alloyed austempered ductile iron, Mater. Charact. 57 (2006) 211–17.
DOI: 10.1016/j.matchar.2006.01.014
Google Scholar
[21]
E. Tyrała, Phase Composition Using a Variable Magnetic Field, ISIJ Int. 54 (2014) 700–703.
DOI: 10.2355/isijinternational.54.700
Google Scholar
[22]
M. Górny, E. Tyrała, G. Sikora, and Ł. Rogal, Identification of Mg2Cu Particles in Cu Alloyed Austempered Ductile Iron, Met. Mater. Int. 24 (2018) (in print).
DOI: 10.1007/s12540-017-7234-3
Google Scholar