[1]
T. Kusakawa, S. Kim, T. Kondo, Volume change of molten spheroidal graphite cast iron. 1972, Report of the Castings Research Laboratory: Waseda University. pp.23-32.
Google Scholar
[2]
K. Hellström, A. Diószegi, L. Diaconu, A broad literature review of density measurements of liquid cast iron. Metals, 7(5) (2017).
DOI: 10.3390/met7050165
Google Scholar
[3]
J. Blumm, J.B. Henderson, Measurement of the volumetric expansion bulk density of metals in the solid and molten regions. High Temp. - High Pressures, 32(1) (2000) 109-113.
DOI: 10.1068/htwu520
Google Scholar
[4]
I. Jimbo, A.W. Cramb, The Density of Liquid Iron-Carbon Alloys. Metall. Trans. B. 24B (1993) 5-10.
Google Scholar
[5]
H. Mizukami, A. Yamanaka, T. Watanabe, Prediction of density of carbon steels. ISIJ Int. 42(4) (2002) 375-384.
DOI: 10.2355/isijinternational.42.375
Google Scholar
[6]
J. Hattel, Fundamentals of Nummerical Modelling of Casting Processes, first ed, Polyteknisk Forlag, Kgs. Lyngby, Denmark, (2005).
Google Scholar
[7]
A. Dioszegi et al., Modelling and simulation of heat conduction in 1-D polar spherical coordinates using control volume-based finite difference method. Int. J. Numer. Methods Heat Fluid Flow, 26(1) (2016) 2-17.
DOI: 10.1108/hff-10-2014-0318
Google Scholar
[8]
S. Luo, W. Wang, M. Zhu, Cellular automaton modeling of dendritic growth of Fe-C binary alloy with thermosolutal convection. Int. J. Heat Mass Transfer, 116 (2018) 940-950.
DOI: 10.1016/j.ijheatmasstransfer.2017.09.074
Google Scholar
[9]
R.W. Lewis, K. Ravindran, Finite element simulation of metal casting. International Journal for Numerical Methods in Engineering, 47(1-3) (2000) 29-59.
DOI: 10.1002/(sici)1097-0207(20000110/30)47:1/3<29::aid-nme760>3.0.co;2-x
Google Scholar
[10]
T. Keller, et al., Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 139 (2017) 244-253.
DOI: 10.1016/j.actamat.2017.05.003
Google Scholar
[11]
T. Skrzypczak, E. Węgrzyn-Skrzypczak, L. Sowa, Numerical modeling of solidification process taking into account the effect of air gap. Appl. Math. Comput. 321 (2018) 768-779.
DOI: 10.1016/j.amc.2017.11.023
Google Scholar
[12]
X.-G. Lu, M. Selleby, B. Sundman, Theoretical modeling of molar volume and thermal expansion. Acta Mater. 53(8) (2005) 2259-2272.
DOI: 10.1016/j.actamat.2005.01.049
Google Scholar
[13]
K. Hellström, L. Diaconu, and A. Diószegi, Density and thermal expansion coefficient of liquid grey cast iron and austenite. Submitted to Metallurgical and Materials Transactions A. (2017).
DOI: 10.1007/s41230-020-0035-1
Google Scholar
[14]
P. Svidró, A. Diószegi. Extended Method of Volume Change Measurement at the Solidification of Lamellar Graphite Iron. in International Symposium on the Science and Processing of Cast Iron (SPCI-XI). 2017. Jönköping, Sweden: Trans Tech Publication Ltd.
DOI: 10.4028/www.scientific.net/msf.925.163
Google Scholar