[1]
ISO/TR 10809-1:2009, Cast irons -- Part 1: Materials and properties for design.
Google Scholar
[2]
G. Erjun, S. Liang, W. Liping, Effect of Ce-Mg-Si & Y-Mg-Si Nodularizers on the Microstructures & Mechanical Properties of Heavy Section Ductile Iron, J. of Rare earths. 32(2014) 738–744.
DOI: 10.1016/s1002-0721(14)60135-6
Google Scholar
[3]
T. Skaland, Ø. Grong, T. Grong, A Model for the Graphite Formation in Ductile Cast Iron: Part I. Inoculation Mechanisms, Metall Trans A. 24(1993) 2321–2345.
DOI: 10.1007/bf02648605
Google Scholar
[4]
G. Rivera, R. Boeri, J. Sikora, Influence of the inoculation process, the chemical composition and the cooling rate, on solidification macro and microstructure of ductile iron, Int J Cast Met Res. 16(2003) 23–28.
DOI: 10.1080/13640461.2003.11819553
Google Scholar
[5]
C. Bates, G. Oliver, R. McSwain, Volumetric Changes During Freezing of Ductile Cast Iron, AFS Transactions. 77-59(1977) 289–298.
Google Scholar
[6]
C. Bates, B. Patterson, Volumetric Changes Occurring During the Freezing of Hypereutectic Ductile Irons, AFS Transactions. 79-64(1979) 323–334.
Google Scholar
[7]
R. Hummer, A study of the shrinkage and dilatation during solidification of nodular cast iron – its relation to the morphology of crystallisation, in: H. Fredriksson, M. Hillert (Eds.), The physical metallurgy of cast iron, MRS Symposia Proceedings, Vanderbilt Avenue (NY), Elsevier, 1984, Vol. 34, p.213.
DOI: 10.1557/proc-34-213
Google Scholar
[8]
H. Nakae, M. Fukami, T. Kitazawa, Y. Zou, Influence of Si, Ce, Sb and Sn on chunky graphite formation, Chin Foundry. 8(2010) 96–100.
Google Scholar
[9]
H. Nakae, S. Jung, H. Shin, Formation mechanism of chunky graphite and its preventive measures, J Mater Sci Tec. 24(2008) 289–295.
Google Scholar
[10]
G. Alonso, D. Stefanescu, R. Suarez, et al., Understanding graphite expansion during the eutectic solidification of cast iron through combined Linear Displacement and Thermal Analysis, Int Foundry Res. 66(2014) 2–12.
Google Scholar
[11]
G. Alonso, D. Stefanescu, R. Suarez, et al., Kinetics of graphite expansion during eutectic solidification of cast iron, Int J Cast Met Res. 27(2014) 87–100.
DOI: 10.1179/1743133613y.0000000085
Google Scholar
[12]
P. Svidró, A. Diószegi, On problems of volume change measurements in lamellar cast iron, Int J Cast Met Res. 27(2013) 26–37.
DOI: 10.1179/1743133613y.0000000075
Google Scholar
[13]
I. Svensson, A. Diószegi, On Modelling of Volume Related Defect Formation in Cast Irons, in: P. Sahm, P. Hansen, J. Conley (Eds.), Proceedings of the Ninth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Aachen (DE), Shaker, 2000, p.102.
Google Scholar
[14]
H. Fredriksson, I. Svensson, Computer Simulation of the Structure Formed During Solidification of Cast Iron, in: H. Fredriksson, M. Hillert (Eds.), The physical metallurgy of cast iron, MRS Symposia Proceedings, Vanderbilt Avenue (NY), Elsevier, 1984, Vol. 34, p.237.
DOI: 10.1557/proc-34-273
Google Scholar
[15]
M. Chisamera, I. Riposan, S. Stan, et al., Shrinkage evaluation in ductile iron as influenced by mold media and inoculant type, Int J Cast Met Res. 24(2011) 28–36.
DOI: 10.1179/136404610x12816241546618
Google Scholar
[16]
A. Tadesse, H. Fredriksson, Volume change during solidification of grey cast iron: its relation with the microstructural variation, comparison between experimental and theoretical analysis, Int J Cast Met Res. 30(2017) 159–170.
DOI: 10.1080/13640461.2016.1277851
Google Scholar
[17]
J. Brown, Foseco non-ferrous foundryman's handbook, Oxford, Butterworth-Heinemann, 1999, p.204–215.
Google Scholar
[18]
K. Granat, D. Nowak, et al., The influence of microwave heating and water glass kind on the properties of molding sands, Arch Foundry Eng., 8(2008) 119–122.
Google Scholar
[19]
P. Mrvar, M. Trbizan, J. Medved, Dilatation analysis of the eutectoid transformation of the as-cast spheroidal graphite cast iron, Scand J Metall. 31(2002) 393–400.
DOI: 10.1034/j.1600-0692.2002.10607.x
Google Scholar