[1]
M. Azeem, M. Bjerre, R. Atwood, N. Tiedje, P. Lee, Revealing graphite's multitude of growth modes in a metal-carbon alloy, Submitted. (2017).
Google Scholar
[2]
N.S. Tiedje, Solidification, processing and properties of ductile cast iron, Mater. Sci. Technol. 26 (2010) 505–514.
Google Scholar
[3]
G. Lesoult, M. Castro, J. Lacaze, Solidification of spheroidal graphite cast iron - I. Physcial modelling, Acta Metall. 46 (1998) 983–995.
DOI: 10.1016/s1359-6454(97)00281-4
Google Scholar
[4]
K.M. Pedersen, J.H. Hattel, N. Tiedje, Numerical modelling of thin-walled hypereutectic ductile cast iron parts, Acta Mater. 54 (2006) 5103–5114.
DOI: 10.1016/j.actamat.2006.06.049
Google Scholar
[5]
K.M. Pedersen, N.S. Tiedje, Undercooling and nodule count in thin walled ductile iron castings, Int. J. Cast Met. Res. 20 (2007) 145–150.
DOI: 10.1179/136404607x239816
Google Scholar
[6]
M. Bjerre, N. Tiedje, J. Thorborg, J. Hattel, Modelling the solidification of ductile cast iron parts with varying wall thicknesses, IOP Conf. Ser. Mater. Sci. Eng. 84 (2015) 12038.
DOI: 10.1088/1757-899x/84/1/012038
Google Scholar
[7]
M.A. Azeem, P.D. Lee, A.B. Phillion, S. Karagadde, P. Rockett, R.C. Atwood, L. Courtois, K.M. Rahman, D. Dye, Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography, Acta Mater. (2017).
DOI: 10.1016/j.actamat.2017.02.022
Google Scholar
[8]
S. Karagadde, P.D. Lee, B. Cai, J.L. Fife, M.A. Azeem, K.M. Kareh, C. Puncreobutr, D. Tsivoulas, T. Connolley, R.C. Atwood, Transgranular liquation cracking of grains in the semi-solid state., Nat. Commun. 6 (2015) 8300.
DOI: 10.1038/ncomms9300
Google Scholar
[9]
K.M. Kareh, P.D. Lee, R.C. Atwood, T. Connolley, C.M. Gourlay, Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography, Nat. Commun. 5 (2014) 4464.
DOI: 10.1038/ncomms5464
Google Scholar
[10]
M. Bjerre, In situ observations of graphite formation during solidification of cast iron, Ph.D.-thesis, Technical University of Denmark, (2017).
Google Scholar
[11]
K.C. Su, I. Ohnaka, I. Yamauchi, T. Fukusako, Computer Simulation of Solidification of Nodular Cast Iron, in: H. Fredriksson, M. Hillert (Eds.), Proc Int Symp Met. Cast Iron, 3rd, Stockholm, 1985: p.181–190.
DOI: 10.1557/proc-34-181
Google Scholar
[12]
R.E. Boeri, The solidification of ductile cast iron, The University of British Columbia, (1989).
Google Scholar
[13]
M. Zhu, L. Zhang, H. Zhao, D.M. Stefanescu, Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons, Acta Mater. 84 (2015) 413–425.
DOI: 10.1016/j.actamat.2014.10.057
Google Scholar
[14]
O.R. Myhr, Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution, Acta Mater. 48 (2000) 1605–1615.
DOI: 10.1016/s1359-6454(99)00435-8
Google Scholar
[15]
J.D. Robson, P.B. Prangnell, Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys, Acta Mater. 49 (2001) 599–613.
DOI: 10.1016/s1359-6454(00)00351-7
Google Scholar
[16]
J. Lacaze, M. Castro, G. Lesoult, Solidification of spheroidal graphite cast irons - II. Numerical simulation, Acta Mater. 46 (1998) 997–1010.
DOI: 10.1016/s1359-6454(97)00282-6
Google Scholar