X-Ray Imaging of Formation and Growth of Spheroidal Graphite in Ductile Cast Iron

Article Preview

Abstract:

Time-resolved and in-situ observations using synchrotron radiation X-rays were performed to observe solidification of cast iron (CE=4.5, 0.02mass%Mg). Morphology of graphite particles was influenced by specimen holder material. In the Al2O3 holder, graphite particles were spheroidal at the beginning and then deviated from the spheroidal shape. In addition, the coupled eutectic solidification of austenite and graphite occurred at the final stage. In contrast, the divorced eutectic solidification, in which graphite particles and austenite dendrites independently grew, was selected until the end of solidification in MgO holder. Spheroidal graphite particles were engulfed by austenite. Consequently, typical microstructure observed in ductile cast iron was reproduced in the in-situ observation. The results suggested that oxygen potential, which was determined by Al2O3 or MgO (specimen holder) in the observations, could be an important factor for the selection of eutectic growth mode and graphite morphology.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] H. Morrogh, J. W. Grant : J. Iron and Steel Inst., vol. 155 (1947), p.321.

Google Scholar

[2] A. P. Gagnebin, K. D. Millis and N. B. Pilling: The Iron Age, Feb. 1949, p.77.

Google Scholar

[3] D. M. Stefanescu: Metall. Mater. Trans. A, vol. 38A (2007), pp.1433-1447.

Google Scholar

[4] H. Zhao, M. Zhu, D. M. Stefanescu: Key Eng. Mater., vol.457 (2011), pp.324-329.

Google Scholar

[5] K. M. Muzumdar, J. F. Wallace: AFS Transactions, vol. 80 (1972), pp.317-328.

Google Scholar

[6] K. M. Muzumdar, J. F. Wallace: AFS Transactions, vol. 81 (1973), pp.412-423.

Google Scholar

[7] G. X. Sun, C. R. Loper: 1983, AFS Transactions, vol.91, pp.639-646.

Google Scholar

[8] T. Askaland: Metall. Trans. A, vol.24A (1993), pp.2321-2345.

Google Scholar

[9] M.H. Jacobs, T. J. Law, D. A. Melford, M. J. Stowell: Met. Technol., vol.1 (1974), pp.490-500.

Google Scholar

[10] N. Klorca-Isern, J. Tartera, M. Espanol, M. Marsal, G. Bertran, S. Castel: Micron, vol.33 (2002), pp.357-364.

DOI: 10.1016/s0968-4328(01)00022-1

Google Scholar

[11] H. Itofuji: AFS Transactions, vol.104 (1996), pp.79-87.

Google Scholar

[12] S. Yamamoto, Y. Kawano, Y. Murakami, B. Chang, R. Ozaki: Metal Science, vol.12 (1978), pp.56-60.

Google Scholar

[13] M. J. Lalich, J. R. Hitchings: AFS Transactions, vol.84 (1976), pp.652-658.

Google Scholar

[14] H. Nakae, S. Jung, H. Inoue, H. Shin: 2004, Proc. 66th World Foundry Congress, Istanbul, pp.917-928.

Google Scholar

[15] A, Sugiyama, H. Yasuda, T. Nagira, M. Yoshiya, K. Uesugi, K. Umetani, I. Ohnaka: J. Japan Foundry Engineering Society, vol.82 (2011), pp.131-136.

Google Scholar

[16] K. Yamane, H. Yasuda, A. Sugiyama, T. Nagira, M. Yoshiya, K. Uesugi, K. Umetani, C. Ushigome, A. Sato: J. Japan Foundry Engineering Society, vol.85 (2013), pp.760-770.

Google Scholar

[17] K. Yamane, A. Sugiyama, T. Nagira, M. Yoshiya, H. Yasuda, Y. Tanaka, A, Sato, K. Uesugi, A. Takeuchi, Y. Suzuki, H. Honda, K. Sato: J. Japan Foundry Engineering Society, vol.86 (2014), pp.461-470.

Google Scholar

[18] K. Yamane, H. Yasuda, A. Sugiyama, T. Nagira, M. Yoshiya, K. Morishita, K. Uesugi, A. Takeuchi, Y. Suzuki: Metall. Mater. Trans. A, vol.46A (2015), pp.4937-4946.

DOI: 10.1007/s11661-015-3077-z

Google Scholar