Stereological Analysis of the Statistical Distribution of the Size of Graphite Nodules in DI

Article Preview

Abstract:

The estimate of a distribution law of the nodule diameters in a volume of cast iron provides information about the graphite nucleation kinetics, and also about the crystallization kinetics. This information is essential for building more accurate mathematical models of the alloy crystallization. The mapping of a Cumulative Distribution Function (CDF3) of radii for graphite nodules in ductile iron is presented on the base of a Probability Density Function (PDF1) of the chord length distribution for random sections of the sample at the planar cross-section.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Y. Yin, Z. Tu, J. Zhou, D. Zhang, M. Wang, Z. Guo, C. Liu, X. Chen, 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography, Metall. and Mater. Trans. A, 48 (2017) 3794-3803.

DOI: 10.1007/s11661-017-4130-x

Google Scholar

[2] R.E. Ruxanda, D.M. Stefanescu, T.S. Piwonka, Microstructure Characterization of Ductile Thin Wall Iron Castings, AFS Trans., 2 (2002) 1131-1148.

Google Scholar

[3] K. Wiencek, T. Skowronek, B. Khatemi, Graphite Particle Size Distribution in Nodular Cast Iron, Metallurgy and Foundry Eng., 31 (2005) 167-174.

Google Scholar

[4] S.D. Wicksell, The Corpuscle Problem: A Mathematical Study of a Biometric Problem. Biometrika, 17 (No. ½) (1925), 84-99.

DOI: 10.1093/biomet/17.1-2.84

Google Scholar

[5] E. Sheil: Statistische Gefügeuntersuchungen I. Z. Metallk., 27 (1935) 199-208.

Google Scholar

[6] H.A. Schwartz: The Metallographie Determination of the Size Distribution of Temper Carbon Nodules, Metals and Alloys, 5 (1934) 139-140.

Google Scholar

[7] S.A. Saltykov: Stereometric Metallurgy, Metallurgizdat, Moscow, (1952).

Google Scholar

[8] S.A. Saltykov: The determination of the size distribution of particles in an opaque material from the measurement of the size distribution of their sections. Stereology. Berlin, Heidelberg, Springer, 1967, 163−173.

DOI: 10.1007/978-3-642-88260-9_31

Google Scholar

[9] T. Li, S.-I. Shimasaki, Sh. Taniguchi, Sh. Narita: Reliability of Inclusion Statistics in Steel Stereological Methods. ISIJ International, 56 (No. 9) (2016) 1625-1633.

DOI: 10.2355/isijinternational.isijint-2016-269

Google Scholar

[10] M. Kong, R.N. Bhattacharya, C. James, A. Basu: A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. GSA Bulletin, 117 (No. 1/2) (2005), 244–249.

DOI: 10.1130/b25000.1

Google Scholar

[11] A.J. Jakeman, R.S. Anderssen: Abel type integral equations in stereology. I. General discussion, Journal of Microscopy. 105 (1975), 121–133.

DOI: 10.1111/j.1365-2818.1975.tb04045.x

Google Scholar

[12] J. Ohser, K. Sandau: Considerations About the Estimation of the Size Distribution in Wicksell's Corpuscle Problem, Lecture Notes in Physics, 554 (2000) 185–202.

DOI: 10.1007/3-540-45043-2_7

Google Scholar

[13] A. Burbelko, D. Gurgul, T. Wiktor: Stereological Analysis of Spherical Particles Size Distribution – Theoretical Basis, Accepted for print in Archives of Foundry Engineering, 18 (2018).

DOI: 10.1515/afe-2017-0132

Google Scholar

[14] J. W. Cahn, R. L. Fullman: On the Use of Lineal Analysis for Obtaining Particle-Size Distribution Functions in Opaque Samples, Trans. AIME, J. Metals, 206 (1956) 610-612.

DOI: 10.1007/bf03377741

Google Scholar

[15] C.W. Lord, T.F. Willis: Calculation of air bubble distribution from results of a Rosiwal traverse of aerated concrete, A.S.T.M. Bull., 177 (1951) 177-187.

Google Scholar

[16] A.G. Spektor: Analysis of distribution of spherical particles in non-transparent structures, Zavodsk. Lab., 16 (1950) 173-177.

Google Scholar

[17] A. Burbelko, D. Gurgul, T. Wiktor: Stereological Analysis of Spherical Particles Size Distribution – Validation, Archives of Foundry Engineering, 17 (2017), 67-72.

DOI: 10.1515/afe-2017-0132

Google Scholar