Extended Method of Volume Change Measurements during Solidification of Lamellar Graphite Iron

Article Preview

Abstract:

Lamellar graphite iron (LGI) is an important technical alloy used to produce cast components for the automotive and the marine industry. The performance of the component is defined by the solidification sequence. Therefore, a lot of research work has been done in the field of solidification. The present work introduces a new measurement approach that combines advanced dilatation measurements with thermal analysis to investigate the solidification of LGI. The method involves a thermally balanced spherical sample. The temperature values are measured in the geometrical center and on the surface of the sample. The released heat of solidification is calculated by using the Fourier Thermal Analysis (FTA) method. The displacement values are measured on the surface of the sample. The volume change is calculated from the displacement data. The dilatation results clearly shows the advantage of the multidirectional measurement.

You have full access to the following eBook

Info:

Periodical:

Pages:

163-170

Citation:

Online since:

June 2018

Export:

Share:

Citation:

* - Corresponding Author

[1] T. F. Russell, The interpretation of thermal curves and some applications to ferrous alloys, J. Iron Steel Inst. 139 (1939) 147–186.

Google Scholar

[2] B. J. Hribovsek, B. Marincek, Thermal analysis of bulk solidified cast iron melts, International Symposium on the Metallurgy of Cast Iron, St Saphorin, Switzerland, 1975, p.659–672.

Google Scholar

[3] L. Bäckerud, K. Nilsson, H. Steen, Study of Nucleation and Growth of Graphite in Magnesium Treated Cast Iron by Means of Thermal Analysis, International Symposium on the Metallurgy of Cast Iron, St Saphorin, Switzerland, 1975, p.625–637.

Google Scholar

[4] H. Fredriksson, B. Rogberg, Thermal analysis for interpretation of solidification cycle, Met. Sci. 13 (12) (1979) 685–690.

DOI: 10.1179/030634579790434303

Google Scholar

[5] U. Ekpoom, R. Heine, Thermal Analysis by Differential Heat Analysis (DHA) of Cast Iron, Am. Foundrymens Soc. 1981 AFS Res. Rep., p.49–60, (1982).

Google Scholar

[6] K. G. Upadhya, D. M. Stefanescu, K. Lieu, D. P. Yeager, Computer-aided Cooling Curve Analysis, Principles and Applications in Metal Casting, AFS Transactions 97 (1989) 61–66.

Google Scholar

[7] Fred J. Bradley, Conrad A. Fung, Thermal Analysis for shrinkage prediction in commercial ductile iron castings, Can. Metall. Q. 30 (4) (1991) 251–260.

DOI: 10.1179/cmq.1991.30.4.251

Google Scholar

[8] E. Fras, W. Kapturkiewicz, H. F. Lopez, The solidification kinetics of cast iron using an improved thermal analysis technique, Int. J. Cast Metal. Res. 6 (3) (1993) 137–142.

DOI: 10.1080/09534962.1993.11819139

Google Scholar

[9] L. Battezzati, M. Baricco, F. Marongiu, G. Serramoglia, D. Bergesio, Melting and Solidification Studies by Advanced Thermal Analysis of Cast Iron, Metall. Sci. Technol. 19 (2) (2001) 16–20.

DOI: 10.1080/13640461.2003.11819564

Google Scholar

[10] A. Diószegi, J. Hattel, Inverse thermal analysis method to study solidification in cast iron, Int. J. Cast Metal. Res. 17 (5) (2004) 311–318.

DOI: 10.1179/136404604225020687

Google Scholar

[11] E. Fraś, M. Górny, H. F. López, The transition from gray to white cast iron during solidification: Part III. Thermal analysis, Metall. Mater. Trans. A 36 (11) (2005) 3093–3101.

DOI: 10.1007/s11661-005-0081-8

Google Scholar

[12] D. Emadi, L. V. Whiting, S. Nafisi, R. Ghomashchi, Applications of thermal analysis in quality control of solidification processes, J. Therm. Anal. Calorim. 81 (1) (2005) 235–242.

DOI: 10.1007/s10973-005-0772-9

Google Scholar

[13] A. Diószegi, I. L. Svensson, Interpretation of Solidification by Thermal Analysis of Cooling Rate, Trans. Indian Inst. Met. 58 (4) (2005) 611 – 616.

Google Scholar

[14] A. Diószegi, I. L. Svensson, On the problems of thermal analysis of solidification, Mat. Sci. Eng. A - Struct 413–414 (2005) 474–479.

DOI: 10.1016/j.msea.2005.09.052

Google Scholar

[15] P. Larrañaga, J. M. Gutiérrez, A. Loizaga, J. Sertucha, R. Suárez, A Computer-Aided System for Melt Quality and Shrinkage Propensity Evaluation Based on the Solidification Process of Ductile Iron, AFS Transactions 116 (2008) 547–561.

Google Scholar

[16] I. Riposan, M. Chisamera, S. Stan, M. Barstow, Identifying chill tendency of cast iron melts by thermal analysis, Int. J. Cast Metal. Res. 26 (3) (2013) 152–159.

DOI: 10.1179/1743133612y.0000000048

Google Scholar

[17] J. F. Xu, F. Liu, D. Zhang, Z. Y. Jian, An analytical model for solidification of undercooled metallic melts, J. Therm. Anal. Calorim. 119 (1) (2015) 273–280.

DOI: 10.1007/s10973-014-4089-4

Google Scholar

[18] A. Diószegi, V.-L. Diaconu, V. Fourlakidis, Prediction of volume fraction of primary austenite at solidification of lamellar graphite cast iron using thermal analyses, J. Therm. Anal. Calorim. 124 (1) (2016) 215–225.

DOI: 10.1007/s10973-015-5158-z

Google Scholar

[19] S. Engler, D. Boenisch, B. Kohler, Metal and Mold Wall Movements During Solidification of Cast Iron, Cast Metals Research Journal AFS 9 (1973) 20–30.

Google Scholar

[20] M. Chisamera, I. Riposan, S. Stan, P. Toboc, T. Skaland, D. White, Shrinkage evaluation in ductile iron as influenced by mould media and inoculant type, Int. J. Cast Metal. Res., 24 (1) (2011) 28–36.

DOI: 10.1179/136404610x12816241546618

Google Scholar

[21] Y. Zou, Y. Hayashi, H. Kojima, K. Yamazaki, H. Nakae, Influence of Mold Material and CE Value on Shrinkage of Spheroidal Graphite Cast Iron, presented at the 70th World Foundry Congress, Monterrey, Nuevo Leon, Mexico, (2012).

Google Scholar

[22] S. Stan, M. Chisamera, I. Riposan, M. Barstow, Application of thermal analysis to monitor the quality of hypoeutectic cast irons during solidification in sand and metal moulds, J. Therm. Anal. Calorim. 110 (3) (2012) 1185–1192.

DOI: 10.1007/s10973-011-2128-y

Google Scholar

[23] G. Alonso, D. M. Stefanescu, R. Suarez, A. Loizaga, G. Zarrabeitia, Understanding graphite expansion during the eutectic solidification of cast iron through combined Linear Displacement and Thermal Analysis, Giessereiforschung 66 (2014) 18–29.

DOI: 10.1179/1743133613y.0000000085

Google Scholar

[24] J. T. Svidró, A. Diószegi, J. Tóth, The novel application of Fourier thermal analysis in foundry technologies, J. Therm. Anal. Calorim. 115 (1) (2014) 331–338.

DOI: 10.1007/s10973-013-3289-7

Google Scholar

[25] R.-A. F. de Réaumur, Memoirs on steel and iron. 1722.

Google Scholar

[26] R. Mallet, On the Alleged Expansion in Volume of Various Substances in Passing by Refrigeration from the State of Liquid Fusion to That of Solidification, P. R. Soc. London, 23 (1874) 209–234.

DOI: 10.1098/rspl.1874.0029

Google Scholar

[27] Thomas Johann Seebeck, Abhandlurgen Phys. Kl. Koniglichen Akad. Wiss. Zu Berl., vol. 1822–23, p.265–373.

Google Scholar

[28] Henry Le Chatelier, Comptes Rendus, 102 (1886) 819-822.

Google Scholar

[29] Henry Le Chatelier, J. Phys, vol. 6, p.23, 1887.

Google Scholar

[30] P. Svidró, A. Diószegi, On problems of volume change measurements in lamellar cast iron," Int. J. Cast Metal. Res. 27 (1) (2013) 26–37.

DOI: 10.1179/1743133613y.0000000075

Google Scholar

[31] E. Fras, W. Kapturckiewicz, A. Burbielko, H. F. López, Numerical simulation and fourier thermal analysis of solidification kinetics in high-carbon Fe-C alloys, Metall. Mater. Trans. B 28 (1) (1997) 115–123.

DOI: 10.1007/s11663-997-0134-z

Google Scholar

[32] A. Diószegi, I. L. Svensson, A comparison of Fourier vs. Newtonian thermal analyse and its influence on the inverse kinetic growth calculation, in A. Diószegi: Dissertation No. 871, Linköping, Sweden, 2004, p.311–318.

Google Scholar

[33] D. Emadi, L. V. Whiting, M. Djurdjevic, W. T. Kierkus, J. Sokolowski, Comparison Of Newtonian And Fourier Thermal Analysis Techniques For Calculation Of Latent Heat And Solid Fraction Of Aluminum Alloys, Metal. - J. Metall. 2 (10) (2004) 91–106.

DOI: 10.30544/379

Google Scholar

[34] T. Turner, Volume and Temperature Changes during the Cooling of Cast Iron, J. Iron Steel I. 1 (1906) 48–74.

Google Scholar

[35] P. Mrvar, M. Trbižan, J. Medved, Investigation of cast iron solidification with dilatation analysis, Kovine Zlitine Tehnol. Slov. 33 (1-2) (1999) 45–49.

Google Scholar

[36] Z. Gedeonova, S. Bodi, J. Dúl, G. Nándori, L. Vigh, Displacement on the surface mould and metal during the solidification of nodular graphite iron castings, Mater. Sci. Forum 2 (215-216) (1995) 391–398.

DOI: 10.4028/www.scientific.net/msf.215-216.391

Google Scholar

[37] L. Elmquist, A. Diószegi, On the Problems of a Migrating Hot Spot, Mater. Sci. Forum, 649 (2010) 443–448.

DOI: 10.4028/www.scientific.net/msf.649.443

Google Scholar

[38] Thermo-Calc 2016b, database: TCFE7 - Steels/Ferrous Alloys. Stockholm, Sweden: Thermo-Calc AB.

Google Scholar

[39] I. L. Svensson, I. Dugic, Modelling of volumes in cast iron solidification to predict shrinkage and expansion defects, Int. J. Cast Metal. Res. 11 (6) (1999) 489–494.

DOI: 10.1080/13640461.1999.11819322

Google Scholar