[1]
Z. Gronostajski, The constitutive equations for FEM analysis, J Mater Process Tech, 106 (2000), 40-44.
Google Scholar
[2]
I.L. Svensson, J. Olofsson, On microstructure-based mechanical behaviour of a ductile iron component, 10th International Symposium on the Science and Processing of Cast Iron - SPCI10, (2014).
Google Scholar
[3]
R. Ghasemi, J. Olofsson, A.E.W. Jarfors, I.L. Svensson, Modelling and simulation of local mechanical properties of high silicon solution-strengthened ferritic compacted graphite iron, Int J Cast Metal Res, 30 (3) (2017), 125-132.
DOI: 10.1080/13640461.2016.1261520
Google Scholar
[4]
J. Olofsson, I.L. Svensson, Incorporating predicted local mechanical behaviour of cast components into finite element simulations, Mater Design, 34 (2012), 494-500.
DOI: 10.1016/j.matdes.2011.08.029
Google Scholar
[5]
J. Olofsson, I.L. Svensson, The effects of local variations in mechanical behaviour – Numerical investigation of a ductile iron component, Mater Design, 43 (2013), 264-271.
DOI: 10.1016/j.matdes.2012.07.006
Google Scholar
[6]
J. Olofsson, I.L. Svensson, Casting and stress-strain simulations of a cast ductile iron component using microstructure-based mechanical behaviour, IOP Cong Ser-Mat Sci, 33 (2012).
DOI: 10.1088/1757-899x/33/1/012051
Google Scholar
[7]
A. Heinrietz, J. Eufinger, W. Stets, J. Linn, A. Egner-Walter, J. Richter, G.-S. Leo, E. Fritsche, N. Zenker, F. Pollicino, Maßgeschneiderte Bauteileigenschaften durch Integration von Fertigungs- und Funktionssimulation, Abschlussbericht BMBF Projekt Nr. 01R/0713, (2011).
Google Scholar
[8]
VDMA Guideline 23902: Guideline for fracture mechanical strength assessment of planet carriers made of nodular cast iron EN-GJS-700-2 for wind turbine gear boxes, (2014).
Google Scholar
[9]
P. Langenberg, C. Thomser, J.C. Sturm J.C., P. Kucharczyk, Integration of Casting Process Simulation into Safety-Oriented Component Design - Status and Outlook, Presented at CastTec Conference, November 2016, Darmstadt.
Google Scholar
[10]
W. Baer, Bruchmechanische Bewertung ferritischer Gußeisenwerkstoffe sowie artgleicher Schweißverbindungen bei statischer Beanspruchung, Dissertation TU Bergakademie Freiberg, (1996).
Google Scholar
[11]
G. Pusch, S. Henkel, P. Biermann, P. Hübner, A. Ludwig, P. Trubitz, T. Mottitschka, L. Krüger, Determination of fracture mechanics parameters for cast iron materials under static dynamic and cyclic loading, Dedicated to Professor Meinhard Kuna on the occasion of his 65th birthday.
DOI: 10.1007/978-3-319-21467-2_7
Google Scholar
[12]
BS7910: Guideline on methods for assessing the acceptability of flaws in metallic structures, British Standard Institutions, (2013).
Google Scholar
[13]
FKM Heft 258, Bruchmechanischer Festigkeitsnachweis, 2009 (info: www.vdma/fkm).
Google Scholar
[14]
API RP 579-1 / ASME FFS-1: Fitness-for-Service, API Publishing Services, First edition, January (2016).
Google Scholar
[15]
IWM Verb 8-1, Fraunhofer Institut für Werkstoffmechanik Freiburg, (2016).
Google Scholar
[16]
J. Olofsson, K. Salomonsson, J. Johansson, A methodology for microstructure-based structural optimization of cast and injection moulded parts using knowledge-based design automation, Adv Eng Softw, 109 (2017), 44-52.
DOI: 10.1016/j.advengsoft.2017.03.003
Google Scholar
[17]
R. Cenni, M. Cova, G. Bertuzzi, A methodology to consider local material properties in structural optimization, P I Mech Eng C-J MEC, 231 (issue 15) (2017), 2822-2834.
DOI: 10.1177/0954406216640807
Google Scholar