p.239
p.249
p.257
p.264
p.272
p.280
p.288
p.296
p.304
Strength Prediction of Lamellar Graphite Iron: From Griffith’s to Hall-Petch Modified Equation
Abstract:
Traditionally, ultimate tensile strength (UTS) is used as the main property for the characterization of lamellar graphite iron (LGI) alloys under static loads. The main models found in the literature for predicting UTS of pearlitic lamellar graphite iron are based on either regression analysis on experimental data or on modified Griffith or Hall-Petch equation.In pearlitic lamellar graphite iron the primary austenite dendritic network, transformed to pearlite, reinforces the bulk material while the distance between those pearlite grains, defines the maximum continuous defect size in the bulk material. Recently the novel parameter of the Diameter of Interdendritic Space has been used to express the flow length in a modified Griffith equation for the prediction of the UTS in LGI. Nevertheless this model neglects the strengthening effect of the pearlite lamellar spacing within the perlite grains. A model based on modified Hall-Petch equation was developed in this work. The model considers the effect of both microstructure parameters and covers a broad spectrum of microstructure sizes typical for complex shape castings with various wall thicknesses.
Info:
Periodical:
Pages:
272-279
Citation:
Online since:
June 2018
Authors:
Permissions:
Share:
Citation: