Mechanical Properties and Impact Toughness of Nickel and Aluminum Alloyed High Silicon Ductile Iron

Article Preview

Abstract:

High silicon grades of ductile cast iron are known to be highly advantageous in regard to technically relevant properties and economic efficiency. In particular, the outstanding mechanical properties lead to an increasing demand since 2011, the year of incorporation to the EN 1563 standard. However, low impact resistance and spontaneous failure are concerns that limit the application, especially at lower temperatures. Silicon serves as a solid solution strengthener. By the addition of cobalt, aluminum and nickel as additional solid solution strengthener, an improvement in mechanical properties compared to only silicon could be obtained. Previous studies showed that the addition of 1.5 wt.% Ni to an EN-GJS-500-14 grade with 3.8 wt.% Si resulted in a tensile strength of 650 MPa at 15 % elongation. In the present study, silicon was substituted stepwise by nickel and aluminum, simultaneously aiming at the retention of the mechanical properties of the EN-GJS-500-14 grade. By decreasing the silicon content to 3.3 wt.% Si at 1.1 wt.% Ni and 0.2 wt.% Al, EN-500-14 was obtained. Even though, the presence of pearlite in the matrix was observed, this substitution of silicon led to an increase in Charpy-V-notch toughness by 4 Joule at room temperature. For further alloy design of high silicon ductile cast iron for simultaneously substituting silicon and improving the mechanical properties and notch toughness, the restrictions for pearlite formation must be complied.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] L. Björkegren, Ferritic ductile iron with higher silicon content, Swedish Foundry Association (941028) (1994).

Google Scholar

[2] R. Larker, Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators, 6(4) (2009) 343-351.

Google Scholar

[3] A. Alhussein, M. Risbet, A. Bastien, J.-P. Chobaut, D. Balloy, J. Favergeon, Influence of silicon and addition elements on the mechanical behavior of ferritic ductile cast iron, Mater. Sci. Eng. A-Struct 605 (2014) 222-228.

DOI: 10.1016/j.msea.2014.03.057

Google Scholar

[4] J.R. Davis, Alloying: understanding the basics, ASM international, Materials Park OH, (2001).

Google Scholar

[5] C. Labrecque, M. Gagne, Ductile iron: Fifty years of continuous development, Can. Metall. Q. 37(5) (1998) 343-378.

DOI: 10.1016/s0008-4433(98)00031-7

Google Scholar

[6] L. Bjorkegren, K. Hamberg, Silicon alloyed ductile iron with excellent ductility and machinability, Hommes et Fonderie(France) 307 (2000) 10-20.

Google Scholar

[7] J. Janowak, R. Gundlach, A Modern Approach to Alloying Gray Iron.(Retroactive Coverage), AFS Trans. 90 (1982) 847-863.

Google Scholar

[8] J. Goroncy, Neues Gusseisen wiegt Leichtbaudefizite auf, VDI Nachrichten (2004).

Google Scholar

[9] K. Herfurth, R. Gorski, K. Beute, M. Hering Gontermann-Peipers, Gopag C 500 F—Gusswerkstoff für den Maschinenbau mit höherer Festigkeit und Bruchdehnung bei sehr homogener Härteverteilung, Giesserei 98(6) (2011) 68.

Google Scholar

[10] P. Mikoleizik, G. Geier, SiWind–Werkstoffentwicklung für Offshore-Windenergieanlagen im Multimegawatt-Bereich, Giesserei 9 (2014) 64-69.

Google Scholar

[11] M. Hafiz, Mechanical properties of SG-iron with different matrix structure, J. Mater. Sci. 36(5) (2001) 1293-1300.

Google Scholar

[12] G. Toktaş, M. Tayanc, A. Toktaş, Effect of matrix structure on the impact properties of an alloyed ductile iron, Mater. Charact. 57(4) (2006) 290-299.

DOI: 10.1016/j.matchar.2006.02.008

Google Scholar

[13] L.E. Bjorkegren, K. Hamberg, Silicon Alloyed Ductile Iron with Excellent Ductility and Machinability, Keith Millis Symposium on Ductile Cast Iron (2003).

Google Scholar

[14] W. Gerberich, Y. Chen, D. Atteridge, T. Johnson, Plastic flow of Fe-binary alloys—II. Application of the description to the ductile-brittle transition, Acta Metall. 29(6) (1981) 1187-1201.

DOI: 10.1016/0001-6160(81)90069-9

Google Scholar

[15] P. Weiß, J. Brachmann, A. Bührig-Polaczek, S. F. Fischer, Influence of Nickel and Cobalt on the Microstructure of Silicon Solution-strengthened Ductile Iron, Mater. Sci. Technol. (2014).

DOI: 10.1179/1743284714y.0000000735

Google Scholar

[16] S.F. Fischer, J. Brachmann, A. Bührig-Polaczek, P. Weiß, Metallurgische Verbesserung von mischkritallverfestigten Gusseisen mit Kugelgrafit: Einfluss von Cobalt und Nickel auf die Mikrostruktur, Giesserei 104(6) (2017) 38-45.

Google Scholar

[17] S.F. Fischer, J. Brachmann, A. Bührig-Polaczek, P. Weiß, Metallurgische Verbesserung von mischkritallverfestigten Gusseisen mit Kugelgrafit Teil 2: Einfluss von Cobalt und Nickel auf die mechanischen Eigenschaften, Giesserei 104(7) (2017) 40-51.

Google Scholar

[18] F. Neumann, Gusseisen, Expert-Verlag, Renningen-Malmsheim (1999).

Google Scholar

[19] DIN Deutsches Institut für Normung e. V., DIN 50125, Prüfung metallischer Werkstofe - Zugproben, Beuth Verlag GmbH, Berlin, Beuth Verlag GmbH, Berlin, (2016).

DOI: 10.1002/maco.19780291022

Google Scholar

[20] L. Bjorkegren, K. Hamberg, B. Johannesson, Fachaufsatze-Mechanische Eigenschaften und Bearbeitbarkeit von mit Silicium verfestigten ferritischen Gusseisen mit Kugelgraphit-Einfluss von Silicium-Hartestreuungen-Vergleich mit GJS-500-7, Giesserei Praxis (1) (1999).

Google Scholar

[21] DIN Deutsches Institut für Normung e. V., DIN EN 1563:2012-03, Gießereiwesen – Gusseisen mit Kugelgraphit, Beuth Verlag GmbH, Berlin, (2012).

DOI: 10.1002/star.19770290713

Google Scholar

[22] T. Thielemann, Zur Wirkung von Spurenelementen im Gusseisen mit Kugelgraphit, Giessereitechnik 16(1) (1970) 16-24.

Google Scholar