Reassessment of Crystal Growth Theory of Graphite in Cast Iron

Article Preview

Abstract:

The problem of graphite crystallization and growth in cast iron has recently received increased attention. As most of the published literature describe analysis of room temperature graphite, there is a legitimate concern that the crystallization of graphite is concealed by recrystallization and growth in solid state occurring after solidification. To avoid confusion in the interpretation of room temperature graphite morphology, the authors used Field Emission Gun SEM on deep-etched interrupted solidification (quenched) specimens to reveal the morphology of graphite at the very beginning of solidification, when the graphite is in contact with the liquid. Information from related phenomena, such as crystallization of hexagonal structure snowflakes and metamorphic graphite, as well as of diamond cubic structure silicon crystals in aluminum alloys is incorporated in the analysis. Research discussing graphite produced through gas-solid and solid-solid transformations is also examined. Because the faceted growth of graphite is the result of diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics, a variety of solidification morphologies are found. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets generated through the growth of graphene layers. As solidification advances, the platelets thicken through layer growth, and then aggregate through mechanisms that may include foliated/tiled-roof crystals and dendrites, curved-circumferential, cone-helix, helical, and columnar or conical sectors growth.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov: Nat. Mater. Vol 6 (2007) 183-191.

Google Scholar

[2] U. Nakaya, Snow Crystals: Natural and Artificial (Cambridge Univ. Press, Cambridge 1954).

Google Scholar

[3] A. Hellawell: Prog. Mater. Sci. 15 (1970) 3-78.

Google Scholar

[4] C.R. Loper, C.B. Kim, K.M. Htun, R.W. Heine: in Recent Research on Cast Iron, H.D. Merchant ed. (Gordon and Breach, New York, N.Y., 1968) 363-387.

Google Scholar

[5] D.A. Granger, R. Elliott: in ASM Handbook Vol.15 Casting, D.M. Stefanescu ed. (ASM International, 1988) 159-168.

Google Scholar

[6] B. Lux, F. Mollard, I. Minkoff: in The Metallurgy of Cast Iron, B. Lux, I. Minkoff, F. Mollard eds. (Georgi Publishing Co., St Saphorin, Switzerland, 1974) 371-401.

DOI: 10.1002/mawe.19760070712

Google Scholar

[7] H Fredriksson, M Hillert, N Lange: J. Inst. Met. 101 (1973) 285-299.

Google Scholar

[8] E. Tillová, M. Chalupová, L. Hurtalová: in: V. Kazmiruk ed., Scanning Electron Microscopy, (InTech, Chapters published March 09, 2012).

Google Scholar

[9] D.D. Saratovkin: Dendritic Crystallization (Consultants Bureau, New York, NY, 1959).

Google Scholar

[10] A.N. Roviglione, J.D. Hermida: Metall. Mater. Trans. Vol 35B (2004) 313.

Google Scholar

[11] D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez: Acta mater. 107 (2016) 102-126.

DOI: 10.1016/j.actamat.2016.01.047

Google Scholar

[12] D.M. Stefanescu, R. Huff, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez: Metall. Mater. Trans. 47, (2016) 4012-4023.

DOI: 10.1007/s11661-016-3541-4

Google Scholar

[13] D.H. St. John, L.M. Hogan: J. Crystal Growth 46 (1979) 387-398.

Google Scholar

[14] V.N. Kvasnitsa, V.G. Yatsenko, J.A. Jaszczak: Can. Mineralogist 37 (1999) 951-960.

Google Scholar

[15] D.D. Double, A. Hellawell: Acta Metall. 17 (1969) 1071-1083; 22 (1974) 481-487.

Google Scholar

[16] D.D. Double, A. Hellawell: in: B. Lux, I. Minkoff, F. Mollard (Eds.), The Metallurgy of Cast Iron (Georgi Publishing Co., St Saphorin, Switzerland, 1975) 509-528.

DOI: 10.1002/mawe.19760070712

Google Scholar

[17] S. Amelinckx, W. Luyten, T. Krekels, et al.: J. Crystal Growth 121 (1992) 543-558.

Google Scholar

[18] J.A. Jaszczaka, G.W. Robinson, S. Dimovskic, Y. Gogotsic: Carbon 41 (2003) 2085-(2092).

Google Scholar

[19] B. Lux, I. Minkoff, F. Mollard, E. Thury: in: B. Lux, I. Minkoff, F. Mollard (Eds.), The Metallurgy of Cast Iron (Georgi Publishing Co., St Saphorin, Switzerland, 1975) 495-508.

DOI: 10.1002/mawe.19760070712

Google Scholar

[20] S. Amini, R. Abbaschian: Carbon 51 (2013) 110-123.

Google Scholar

[21] J.P. Sadocha, J.E. Gruzleski: in B. Lux, I. Minkoff, F. Mollard (Eds.), The Metallurgy of Cast Iron (Georgi Publishing Co., St Saphorin, Switzerland, 1975) 443-459.

DOI: 10.1002/mawe.19760070712

Google Scholar

[22] K. He, H.R. Daniels, A. Brown, et al.: Acta Mater. 55 (2007) 2919-2927.

Google Scholar

[23] D.D. Li, R.X. Tan, J.X. Gao, et al.: Carbon 111 (2017) 428-438.

Google Scholar

[24] K.M. Fang, G.C. Wang, X. Wang, et al.: Science and Processing of Cast Iron VIII (Beijing, China, Tsinghua Univ. Press, 2006) 181-187.

Google Scholar

[25] T. Hara, T. Kitagawa, K. Kuroki, et al.: Material Trans. JIMM 55(9) (2014) 1500-1505.

Google Scholar

[26] I. Minkoff, I. Einbinder, Official Exchange Paper - Israel, Int. Foundry Congress (1963) 139143.

Google Scholar

[27] M. Hamasumi, Trans. JIM, Vol 6 (1965) pp.234-239.

Google Scholar

[28] M.J. Lalich, J.R. Hitchings: AFS Trans. 84 (1976) 653-664.

Google Scholar

[29] G.R. Purdy, M. Audier: in: H. Fredriksson and M. Hillert (Eds.), The Physical Metallurgy of Cast Iron, Stockholm (Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985), 13-23.

Google Scholar

[30] B. Miao, D.O. Northwood, W. Bian, K. Fang, M. Fan: J Mater Sci 29 (1994) 255-261.

Google Scholar

[31] K. Theuwissen, J. Lacaze, L. Laffont: Carbon 96 (2016) 1120-1128.

Google Scholar

[32] P.C. Liu, C.R. Loper, T. Kimura, H.K. Park: AFS Trans. 88 (1980) 97-118.

Google Scholar

[33] D. Ugarte: Nature, London 359 (1992) 707-709.

Google Scholar