Investigation on the Strong Light-Matter Interaction in the Graphene-Perovskite Heterostructure Photodetector

Article Preview

Abstract:

Two-dimensional perovskite materials have received wide interests due to their highly impressive optoelectronic properties. The combination of single crystalline perovskite as thin as several unit cells with graphene has not been demonstrated, which may have some outstanding performance for its high crystallinity and less defects. Here, high-quality 2D perovskite crystals as thin as several unit cells are synthesized and a broadband photodetector with a high on/off ratio of 4.28×103 is demonstrated. Based on this, we further fabricated a novel hybrid photodetector by growing single crystalline 2D CH3NH3PbI3 perovskite directly onto the graphene channel, and the resulting device shows an impressive photoresponsivity of 61.2 A/W that is six orders of magnitude over pristine perovskite photodetector. Also, a much faster response time of 130 ms is observed, which takes only one-tenth the response time of pristine perovskite photodetector. These results show that 2D graphene-perovskite heterostructure can be a promising candidate for highly efficient and low-cost optoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-91

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.

Google Scholar

[2] A. Tejeda and P. G. Soukiassian, Graphene: from functionalization to devices, J. Phy. D: Appl. Phys. 47 (2014) 090201.

DOI: 10.1088/0022-3727/47/9/090201

Google Scholar

[3] X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327.

DOI: 10.1021/nl072838r

Google Scholar

[4] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS nano 4 (2009) 43-48.

DOI: 10.1021/nn900728d

Google Scholar

[5] F. Xia, T. Mueller, Y-m. Lin, A. Valdes-Garcia and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4 (2009) 839.

DOI: 10.1038/nnano.2009.292

Google Scholar

[6] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9 (2014) 780.

DOI: 10.1038/nnano.2014.215

Google Scholar

[7] J. A. Miwa, M. Dendzik, S. S. Grønborg, M. Bianchi, J. V. Lauritsen, P. Hofmann, and S. Ulstrup, Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum, ACS Nano. 9 (2015) 6502-6510.

DOI: 10.1021/acsnano.5b02345

Google Scholar

[8] H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y Hoh, C-X Pan, S. Li and Q. Bao, Broadband photodetectors based on graphene–Bi2Te3 heterostructure, ACS Nano. 9 (2015) 1886-1894.

DOI: 10.1021/nn506920z

Google Scholar

[9] A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. Castro Neto and B. Özyilmaz, Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors, ACS Nano. 9 (2015).

DOI: 10.1021/acsnano.5b00289

Google Scholar

[10] X. Lin, Y. Xu, A. A. Hakro, T. Hasan, R. Hao, B. Zhang and H. Chen, Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates, J. Mater. Chem. C 1 (2013) 1618-1627.

DOI: 10.1039/c2tc00570k

Google Scholar

[11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[12] A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza and H. J. Snaith, Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells, Nano Lett. 14 (2014) 3247-3254.

DOI: 10.1021/nl500627x

Google Scholar

[13] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum and Q. Xiong, Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices, Adv. Opt. Mater. 2 (2014) 838-844.

DOI: 10.1002/adom.201400106

Google Scholar

[14] W. Niu, A. Eiden, G. V. Prakash and J. J. Baumberg, Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors, Appl. Phys. Lett. 104 (2014) 171111.

DOI: 10.1063/1.4874846

Google Scholar

[15] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals, Science 347 (2015) 967-970.

DOI: 10.1126/science.aaa5760

Google Scholar

[16] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao and H. Fu, Perovskite Microdisk Microlasers Self‐Assembled from Solution, Adv. Mater. 27 (2015) 3405-3410.

DOI: 10.1002/adma.201500449

Google Scholar

[17] L. Niu, Q. Zeng, J. Shi, C. Cong, C. Wu, F. Liu, J. Zhou, W. Fu, Q. Fu and C. Jin, Controlled Growth and Reliable Thickness-Dependent Properties of Organic–Inorganic Perovskite Platelet Crystal, Adv. Funct. Mater. 26 (2016) 5263-5270.

DOI: 10.1002/adfm.201601392

Google Scholar

[18] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forróand E. Horváth, Microengineered CH3NH3PbI3 Nanowire/Graphene Phototransistor for Low-Intensity Light Detection at Room Temperature, Small 11 (2015) 4824-4828.

DOI: 10.1002/smll.201501257

Google Scholar

[19] Y.Lee, J.Kwon, E.Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park and J. H. Cho, High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27(2015) 41-46.

DOI: 10.1002/adma.201402271

Google Scholar

[20] Y. Wang, Y. Zhang, Y. Lu, W. Xu, H. Mu, C. Chen, H. Qiao, J. Song, S. Li, B. Sun, Y. Cheng and Q. Bao, Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain, Adv. Opt. Mater. 3 (2015) 1389-1396.

DOI: 10.1002/adom.201500150

Google Scholar

[21] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Huang, A. Chou, T. Cheng, J. Wang and C. Wu, Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition, Sci. Rep. 7 (2017).

DOI: 10.1038/srep46281

Google Scholar

[22] Y Zhu, S Murali, W Cai, X. L I, J. W. Suk, J. R. Potts and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[23] H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M. P. Cruz, L. Chen, U. Dahmen and R. Ramesh, Controlling self-assembled perovskite− spinel nanostructures, Nano Lett. 6 (2006) 1401-1407.

DOI: 10.1021/nl060401y

Google Scholar

[24] W. J. Yin, H. Chen, T. Shi, S. H. Wei and Y. Yan, Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries, Adv. Electron. Mater. 1 (2015) 1500044.

DOI: 10.1002/aelm.201500044

Google Scholar

[25] A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase and Y. Murata, Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers, Chem. Lett. 43 (2014).

DOI: 10.1246/cl.140074

Google Scholar

[26] P. Pistor, J. Borchert, W. Fränzel, R. Csuk and R. Scheer, Monitoring the phase formation of coevaporated lead halide perovskite thin films by in situ x-ray diffraction, J. Phys. Chem. Lett. 5 (2014) 3308-3312.

DOI: 10.1021/jz5017312

Google Scholar

[27] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9 (2017).

DOI: 10.1021/acsami.7b01709

Google Scholar