Osteogenic Response of Osteoblastic Cells to Root-End Filling Materials

Article Preview

Abstract:

Perforations can occur during endodontic treatment, post placement and removal, and operative procedures. These defects have been treated with a variety of different materials such as resin ionomer, glass ionomer cement and intermediate restorative material. However, the osteogenic response to these substances using osteoblasts have been rarely studied. Thus, the aim of the present study is to evaluate the osteogenic response to resin ionomer (Geristore) and mineral trioxide aggregate (MTA). The surface roughness was significantly higher in the MTA than in the resin ionomer (p<0.05). After 72 hours of incubation mouse osteoblasts attached and spread well over the surfaces of resin ionomer and MTA. As a result from MTT assay, the number of cells gradually increased as the cell incubation time increased. In particular, control group showed higher cell proliferation than the other two groups on days 3 and 5. Resin ionomer showed more active early cell proliferation than MTA (p<0.05). The alkaline phosphatase (ALP) activity was significantly higher in the MTA surface than in the resin ionomer and glass coverslip (p<0.05). Resin ionomer was active in early cell proliferation and adhesion. Resin ionomer may be more suitable for cervical perforation or for perforation of adjacent to the gingiva requiring rapid wound closure. Also, MTA has a rough surface and low initial cell adhesion but because of its superior osteogenic response, it may be appropriate for the area close to the apical region, where the perforation site is wide and the bone tissue regeneration is necessary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-100

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. Osorio, A. Hefti, F. J. Vertucci, A. L. Shawly, Cytotoxicity of endodontic materials, J. Endod. 24 (1998) 91-96.

Google Scholar

[2] S. J. Lee, M. Monsef, M. Trobinejad, Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations, J. Endod. 19 (1993) 541-544.

DOI: 10.1016/s0099-2399(06)81282-3

Google Scholar

[3] T. R. Ford, M. Torabinejad, D. J. McKendry, C. U. Hong, S. P. Kariyawasam, Use of mineral trioxide for repair of furcal perforations, J. Endod. 79 (1995) 756-763.

DOI: 10.1016/s1079-2104(05)80313-0

Google Scholar

[4] R. D. Mick, Resin Ionomer and Hybrid-Ionomer Cements: Part I. Comparison of three Materials for the treatment of Subgingival Root Lesions, Int. J. Perio. Rest. Dent. 16 (1996) 595-601.

Google Scholar

[5] P. Saxena, S. K. Gupta, V. Newaskar, Biocompatibility of root-end filling materials: recent update, Restor. Dent. Endod. 38 (2013) 119-127.

DOI: 10.5395/rde.2013.38.3.119

Google Scholar

[6] Y. J. Lee, H. T. Chung, Y. S. Jung, H. S. Lee, Y. J. Kim, Biocompatibility of three restorative filling materials with human gingival fibroblasts, Oral. Biol. Res. 37 (2013) 25-30.

Google Scholar

[7] K. C. de S. Modena, L. C. C. Casas-Apayco, M. T. Atta, C. A. de S. Costa, J. Hebling, C. R. Sipert, M. F. de L Navarro, C. F. Snatos, Cytotoxicity and biocompatibility of direct and indirect pulp capping materials, J. Appl. Oral. Sci. 17 (2009).

DOI: 10.1590/s1678-77572009000600002

Google Scholar

[8] K. Zhu, R. Haglund, K. Safavi, and L. Spanberg, Adhesion of osteoblasts on root-end filling materials, J. Endod. 26 (2000) 404-406.

DOI: 10.1097/00004770-200007000-00006

Google Scholar

[9] F. Al-Sabek, S. Shostad, K. L. Kirkwood, Preferential Attachment of Human Gingival Fibroblasts to the Resin Ionomer Geristore, J. Endod. 31 (2005) 205-208.

DOI: 10.1097/01.don.0000137650.61607.25

Google Scholar

[10] S. K. Gupta, P. Saxena, V. A. Pant, A. B. Pant, Adhesion and biologic behavior of human periodontal fibroblast cells to resin ionomer Geristore: a comparative analysis, Dent. Traumatol. 29 (2013) 389-393.

DOI: 10.1111/edt.12016

Google Scholar

[11] T. Takita, M. Hayashi, O. Takeichi, B. Ogiso, N. Suzuki, K. Otsuka, K. Ito, Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells, Int. Endod. J. 39 (2006) 415-422.

DOI: 10.1111/j.1365-2591.2006.01097.x

Google Scholar

[12] M. A. Duarte, A. C. Demarchi, J. C. Yamashita, et al. pH and calcium ion release of 2 root-end filling materials, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 95 (2003) 345-347.

DOI: 10.1067/moe.2003.12

Google Scholar

[13] L. C. Baxter, V. Frauchiger, M. Textor, I. Gwynn, R. G. Richards, Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces, Eur. Cell. Mater. 4 (2002) 1-17.

DOI: 10.22203/ecm.v004a01

Google Scholar

[14] A. L. Gomes-Cornélio, E. M. Rodrigues, L. P. Salles, L. B. Mestieri, G. Faria, J. M. Guerreiro-Tanomaru, M. Tanomaru-Filho, Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells, Int. Endod. J. 50 (2017).

DOI: 10.1111/iej.12589

Google Scholar