Preparation and Characterization of Carbon Nanotube/Graphite/Zinc Oxide Composite as Supercapacitor Electrode Material

Article Preview

Abstract:

A simple method has been developed to prepare carbon nanotube/graphite/zinc oxide (CNT/GT/ZnO) composite on SS foil substrate which was employed for supercapacitor electrode materials. The XRD study reveals the formation of CNT/GT/ZnO structure. Scanning electron microscopy characterizations reveal that the combination of CNT/GT and ZnO can increase the conductive property of material. The electrochemical performance of composite electrode was investigated using cyclic voltammetry measurements in 1 M KCl aqueous electrolyte. The CNT/GT/ZnO composite electrode shows the specific capacitance up to 6.99 Fg1 in scan rate of 25 mVs-1 with an energy density of 152.9 Wh kg1 in the potential range −0.5 V to 0.5 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-127

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv Mater. 26 (2014) 2219-2251.

DOI: 10.1002/adma.201304137

Google Scholar

[2] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

Google Scholar

[3] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12.

DOI: 10.1016/j.jpowsour.2010.06.084

Google Scholar

[4] E. Hur and A. Arslan, New electrode active materials for supercapacitors: Pencil graphite electrode coated with cobalt ion doped poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene), Synthetic Metals 193 (2014) 81-88.

DOI: 10.1016/j.synthmet.2014.03.031

Google Scholar

[5] T. Chen and L. Dai, Carbon nanomaterials for high-performance supercapacitors, Mater. Today 16 (2013) 272-280.

Google Scholar

[6] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C Qin, Graphene and carbon nanotubes composite electrodes for supercapacitors with ultra-high energy density, Chem. Phys. 13 (2011) 17615.

DOI: 10.1039/c1cp21910c

Google Scholar

[7] J.R. McDonough, J.W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, Carbon nanofiber supercapacitors with large areal capacitances, Appl. Phys. Lett. 95 (2009) 243109.

DOI: 10.1063/1.3273864

Google Scholar

[8] Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun , C. Sun, Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors, Solid State Ionic 180 (2009) 1525-1528.

DOI: 10.1016/j.ssi.2009.10.001

Google Scholar

[9] T. Laha, A. Agarwal, S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Journal of Materials Science and Engineering 381 (2004) 249-258.

DOI: 10.1016/j.msea.2004.04.014

Google Scholar

[10] A. Subagio, Priyono, Pardoyo, Aswardi, R. Yudianti, A. Subhan, E. Taer, AC-MnO2-CNT composites for electrodes of electrochemical supercapacitors, Materials Science Forum 827 (2015) 113-118.

DOI: 10.4028/www.scientific.net/msf.827.113

Google Scholar

[11] X. Li, Z. Wang, Y. Qiu, Q. Pan, P. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes, J. Alloy Compd. 620 (2015) 31-37.

DOI: 10.1016/j.jallcom.2014.09.105

Google Scholar

[12] Z. Song, W. Liu, P. Xiao, Z. Zhao, G. Liu, J. Qiu, Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window, Matter. Lett. 145 (2015) 44-47.

DOI: 10.1016/j.matlet.2015.01.040

Google Scholar

[13] W. Yao, J. Yang, J. Wang, L. Tao, Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites, Electrochim. Acta. 53 (2008) 7326-7330.

DOI: 10.1016/j.electacta.2008.04.010

Google Scholar

[14] J. Wanga, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, Journal of Solid State Chemistry 184 (2011) 1421.

DOI: 10.1016/j.jssc.2011.03.006

Google Scholar

[15] T. Lu, L. Pana, H. Li, G. Zhua, T. Lva, X. Liua, Z. Suna, T. Chen, D.H.C. Chuab, Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors, Journal of Alloys and Compounds 509 (2011) 5488.

DOI: 10.1016/j.jallcom.2011.02.136

Google Scholar

[16] M. Selvakumar, D.K. Bhat, A.M. Agarwal, S.P. Iyer, G. Sravani, Nano ZnO activated carbon composite electrodes for supercapacitors, Physica B 405 (2010) 2286.

DOI: 10.1016/j.physb.2010.02.028

Google Scholar

[17] L.S. Aravinda, K.K. Nagaraja, H.S. Nagaraja, B. Udaya, ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochimica Acta 95 (2013) 119–124.

DOI: 10.1016/j.electacta.2013.02.027

Google Scholar

[18] A. Subagio, Pardoyo, N.A. Ketut Umiati, V. Gunawan, Sony, K. Rowi, Studi temperatur penumbuhan carbon nanotubes (CNT) yang ditumbuhkan dengan metode spray pyrolisis, Nanosains Nanotek. 2(1) (2009) 13-15.

Google Scholar

[19] Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites, Nanoscale Research Letters 8 (2013) 473.

DOI: 10.1186/1556-276x-8-473

Google Scholar

[20] C.E. Cromer, Preparation and characterization of vanadium oxide on carbon fiber paper as electrodes for pseudocapacitors, Gerogia Institute of Technology, (2013).

Google Scholar

[21] J. Chen, C. Li, GK. Eda, Y. Zhang, W. Lei, M. Chhowalla, W.I. Milne, W.Q. Deng, Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods, Chemical Communication 47 (2011) 6084 – 6086.

DOI: 10.1039/c1cc10162e

Google Scholar