Integration of Multiwalled Carbon Nanotubes in Bulk Heterojunction CdSe/PCPDTBT Hybrid Solar Cells

Article Preview

Abstract:

In this work, the development of solution-processed bulk heterojunction hybrid solar cells based on CdSe quantum dot (QD) and conjugated polymer poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b] dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)], PCPDTBT was performed. The photoactive layer was formed by integrating CdSe QDs onto multiwalled carbon nanotubes (CNTs). A simple method of thiol functionalization in the interface CNTs and CdSe QDs has been investigated. Integration of CNTs enhances long-term performance of solar cells devices. Initial PCE values of about 1.9 % under AM1.5G illumination have been achieved for this hybrid CNT-CdSe photovoltaic device. In addition, the long-term stability of the photovoltaic performance of the devices was investigated and found superior to CdSe QD only based devices. About 84 % of the initial PCE remained after storage in a glove box for one year without any further encapsulation. It is concluded that the improvement is mainly due to a strong binding between thiol functionalized CNTs and CdSe QDs, resulting preservation of the nanomorphology of the hybrid film over time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-157

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, M. Eck, M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers, Energy & Environmental Science 3 (2010) 1851–1864.

DOI: 10.1039/c0ee00143k

Google Scholar

[2] C.-H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat Mater 13 (2014) 796–801.

DOI: 10.1038/nmat3984

Google Scholar

[3] N.M. Gabor, Z. Zhong, K. Bosnick, J. Park, P.L. McEuen, Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes, Science 325 (2009) 1367–1371.

DOI: 10.1126/science.1176112

Google Scholar

[4] R.A. Hatton, A.J. Miller, Silva, S. R. P., Carbon nanotubes: a multi-functional material for organic optoelectronics, Journal of Materials Chemistry 18 (2008) 1183–1192.

DOI: 10.1039/b713527k

Google Scholar

[5] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells 92 (2008) 686–714.

DOI: 10.1016/j.solmat.2008.01.005

Google Scholar

[6] E. Kymakis, Amaratunga, G. A. J., Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Applied Physics Letters 80 (2002) 112–114.

DOI: 10.1063/1.1428416

Google Scholar

[7] A.J. Miller, R.A. Hatton, Silva, S. R. P., Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics, Applied Physics Letters 89 (2006) 123115.

DOI: 10.1063/1.2356115

Google Scholar

[8] T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larsen, G. Teeter, K.M. Jones, J.L. Blackburn, van de Lagemaat, Jao, Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer, Applied Physics Letters 96 (2010).

DOI: 10.1063/1.3453445

Google Scholar

[9] P.R. Somani, S.P. Somani, M. Umeno, Application of metal nanoparticles decorated carbon nanotubes in photovoltaics, Applied Physics Letters 93 (2008) 33151–33153.

DOI: 10.1063/1.2963470

Google Scholar

[10] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679–2694.

DOI: 10.1039/b700857k

Google Scholar

[11] F. Mammeri, A. Ballarin, M. Giraud, G. Brusatin, S. Ammar, Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures, Colloids and Surfaces A: Physicochemical and Engineering Aspects 439 (2013) 138–144.

DOI: 10.1016/j.colsurfa.2013.03.026

Google Scholar

[12] D. Eder, Carbon Nanotube−Inorganic Hybrids, Chemical Reviews 110 (2010) 1348–1385.

DOI: 10.1021/cr800433k

Google Scholar

[13] M. Eck, C. van Pham, S. Zufle, M. Neukom, M. Sessler, D. Scheunemann, E. Erdem, S. Weber, H. Borchert, B. Ruhstaller, M. Kruger, Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites, Physical Chemistry Chemical Physics 16 (2014).

DOI: 10.1039/c4cp01566e

Google Scholar

[14] C.V. Pham, M. Eck, M. Krueger, Thiol functionalized reduced graphene oxide as a base material for novel graphene-nanoparticle hybrid composites, Chemical Engineering Journal 231 (2013) 146–154.

DOI: 10.1016/j.cej.2013.07.007

Google Scholar

[15] Y. Yuan, F.-S. Riehle, H. Gu, R. Thomann, G. Urban, M. Krüger, Critical Parameters for the Scale-Up Synthesis of Quantum Dots, Journal of Nanoscience and Nanotechnology 10 (2010) 6041–6045.

DOI: 10.1166/jnn.2010.2564

Google Scholar

[16] J. Čech, S.A. Curran, D. Zhang, J.L. Dewald, A. Avadhanula, M. Kandadai, S. Roth, Functionalization of multi-walled carbon nanotubes: Direct proof of sidewall thiolation, physica status solidi (b) 243 (2006) 3221–3225.

DOI: 10.1002/pssb.200669102

Google Scholar

[17] Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, M. Krüger, Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT, Solar Energy Materials and Solar Cells 95 (2011).

DOI: 10.1016/j.solmat.2010.12.041

Google Scholar

[18] A.F. Madsuha, C. van Pham, R. Thomann, M. Krueger, Quantum dot-nanocarbon based hybrid solar cells with improved long-term performance, Synthetic Metals.

DOI: 10.1016/j.synthmet.2016.06.013

Google Scholar

[19] S. Yoo, B. Domercq, B. Kippelen, Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60, Journal of Applied Physics 97 (2005) 103706.

DOI: 10.1063/1.1895473

Google Scholar

[20] Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Bulk and contact resistance in P3HT:PCBM heterojunction solar cells, Photovoltaics, Solar Energy Materials & Thin Films, IMRC 2009-Cancun 95 (2011) 2314–2317.

DOI: 10.1016/j.solmat.2011.03.046

Google Scholar

[21] D. Zhang, D.Z.-R. Wang, R. Creswell, C. Lu, J. Liou, I.P. Herman, Passivation of CdSe Quantum Dots by Graphene and MoS2 Monolayer Encapsulation: Chemistry of Materials, Chem. Mater. 27 (2015) 5032–5039.

DOI: 10.1021/acs.chemmater.5b01522

Google Scholar