Preparation and Compressive Strength Evaluation of Concrete Containing Oil Sludge as Additive

Article Preview

Abstract:

Concretes were prepared containing oil sludge additive to produce new materials for construction. The oil sludge and concrete have previously been characterized in terms of chemical composition of the elements present in the materials. The concrete blocks were produced with a defined amount of oily sludge of 3.0 mass% on cement/water factor. All samples were cured at room temperature and then heated at 200 °C for 3 hours and 292 °C for 2h. The surfaces of the samples were subjected to previously grinding for the compressive strength testing. These tests were conducted in a press of 2000 kN load capacity. It was found that concrete containing additive showed a positive response in all the compressive strength tests, compared to concrete without the additive

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-152

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.C.F. Coriolano, A.A.A. Oliveira, R.A.F. Bandeira, V.J. Fernandes, A.S. Araujo: J Therm. Anal. Calorim. Vol. 119 (2015), p.2151.

Google Scholar

[2] K.K.V. Castro, A.L. Figueiredo, A.D. Gondim, A.C.F. Coriolano, A.P.M. Alves, V.J. Fernandes, A.S. Araujo: J Therm Anal Calorim Vol. 117 (2014), p.953.

Google Scholar

[3] A.C.F. Coriolano, C.G.C. Silva, M.J.F. Costa, S.B.C. Pergher, V.P.S. Caldeira, A.S. Araujo: Microp. Mesop. Mater. Vol. 172 (2013), p.206.

Google Scholar

[4] S.H. Hu, S.C. Hu, Y.P Fu: Environ Prog Sustain Energ. Vol. 32 (2013), p.740.

Google Scholar

[5] J.A. Cusidó, L.V. Cremades: Waste Manag. Vol. 32 (2012), p.1202.

Google Scholar

[6] C. Martínez-García, D. Eliche-Quesada, L. Pérez-Villarejo, F.J. Iglesias-Godino, F.A. Corpas-Iglesias: J Environ Manag. Vol. 95 (2012), p. S343.

DOI: 10.1016/j.jenvman.2011.06.016

Google Scholar

[7] D.F. Lin, C.H. Weng: J Environ Eng. Vol. 127 (2001), p.922.

Google Scholar

[8] S.N. Monteiro, C.M.F. Vieira: Ceram. Int. Vol. 31 (2005), p.353.

Google Scholar

[9] Associação Brasileira de Normas Técnicas. Cimento Portland com alta resistência inicial. Rio de Janeiro: ABNT 1990. (NBR 5733).

Google Scholar

[10] Associação Brasileira de Normas Técnicas. Cimentos Portland resistentes a sulfatos. Rio de Janeiro: ABNT 1992. (NBR 5737).

Google Scholar

[11] Associação Brasileira de Normas Técnicas. Concreto – procedimento para moldagem e cura de corpos de prova. Rio de Janeiro: ABNT 2015. (NBR 5738).

Google Scholar

[12] M. Dondi, B. Fabbri, R. Laviano: Miner Petrogr Acta Vol. 35 A (1992), p.179.

Google Scholar

[13] A.M. Segadães: Adv. Appl. Ceram. Vol. 105 (2006), p.46.

Google Scholar

[14] F. Datchi, B. Mallick, A. Salamat, S. Ninet: Rev. Lett. Vol. 108 (2012), p.125701.

Google Scholar

[15] M. Santoro, F.A. Gorelli, R. Bini, G. Ruocco, S. Scandolo, W.A. Crichton: Nature Vol. 441 (2006), p.857.

DOI: 10.1038/nature04879

Google Scholar

[16] G. Mera, A. Navrotsky, S. Sen, H. Kleebe, R. Riedel: Journal of Materials Chemistry Vol. 1 (2013), p.3815.

Google Scholar

[17] S. Sabyasachi, S.J. Widgeona, A. Navrotsky, G. Merac, A. Tavakolib, E. Ionescuc, R. Riedelc: Proceedings of the National Academy of Sciences Vol. 110 (2013), p.15904.

Google Scholar