Absorption Evaluation of Water in Panels from Elephant Grass with Eucalyptus sp. Leaves

Article Preview

Abstract:

There are reports that the production of panels with various mixtures is quite feasible. However, the knownlogment of production of panels with other residues is litle, except wood. The objective of this work was to evaluate the effect of water absorption on panels produced with elephant grass (Pennisetum purpureum Schum.) and Eucalyptus sp. leaves, Consolidated with urea-formaldehyde adhesive. For the production of the panels, the elephant grass (CA) was used, without particle size reduction, and Eucalyptus sp. (EU), freshly collected and crushed as powder. Two panels were produced, one consisting of 100% elephant grass (CA) and another in the proportion (1: 1, from CA: EU), with urea-formaldehyde adhesive. From each panel, 4 specimens were removed and the water absorption test was carried out for 2 hours, in addition to the determination of the apparent density. Panel test specimens (CA) showed, on average, an initial apparent density of 0.5953 g.cm-3 and final (water absorption) of 0.5465 g.cm-3, while those of CA + EU showed an apparent density of 0.5478 g.cm-3 and 0.6881 g.cm-3. The panels (CA) and (CA + EU) produced showed good consolidation after pressing, but It was verified that there are possibilities of improvement in order to minimize water absorption and improve the stability of this product.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Iwakiri, A.C. Caprara, D.C.O. Saks, F.P. Guisantes, J.A. Franzoni, L.B.P. Krambeck, P.A. Rigatto: Scientia Forestalis Vol. 68 (2005), p.39.

Google Scholar

[2] S. Iwakiri, A.S. Andrade, A.A. Cardoso Júnior, E.R. Chipanski, J.G. Prata, M.K.O. Adriazola: Cerne Vol. 11 (2005), p.323.

Google Scholar

[3] Associação Brasileira de Produtores de Floresta Plantada-ABRAF. Anuário estatístico ABRAF 2013 ano base 2012, ABRAF, (2013).

Google Scholar

[4] A.C.F. Vidal, A.B. Hora, Panorama de Mercado: painéis de madeira. BNDES-Biblioteca Digital, Information on https://web.bndes.gov.br/bib/jspui/bitstream/1408/3023/4/Panorama%20de%20mercado.pdf.

Google Scholar

[5] E.O. Brito: Revista da Madeira Vol. 26 (1996), p.34.

Google Scholar

[6] M.X. Ribeiro, Resistência de painéis aglomerados a cupins de madeira seca (Cryptotermes brevis). Dissertação (Mestrado em Ciência e Tecnologia da Madeira)-Lavras: UFLA, 2011, Information on http://repositorio.ufla.br/handle/1/2454.

DOI: 10.11606/t.11.2015.tde-17092015-111807

Google Scholar

[7] T.M. Maloney: Modern Particleboard and Dry-Process Fiberboard Manufacturing. (M. Freeman, San Francisco, 1993).

Google Scholar

[8] M.W. Kelly: Critical literature review of relationships between processing parameters and physical properties of particleboard. FPL, Wisconsin, (1977).

Google Scholar

[9] A.A. Moslemi: Particleboard. (University Press Southern Illinois, 1974).

Google Scholar

[10] G. Tsoumis: Science and Technology of Wood. Structure, Properties, Utilization. (Chapman & Hall New York, 1991).

Google Scholar

[11] S. Kawai, H. Sassaki: Elsevier Applied Science Vol. 11(1993), p.33.

Google Scholar

[12] K.B. Souza, K.N.S. Almeida, J.B. Guimarães Júnior, R. J. Guimarães Neto: Scientia Plena Vol. 8 (2012), p.1.

Google Scholar

[13] E.O. Brito: Produção de chapas de partículas de madeira a partir de maravalhas de Pinus elliottii Engelm. var. elliottii plantado no Sul de Brasil. Doutorado (Tese). Curitiba, 1995. Universidade Federal do Paraná (UFPR). (PR).

DOI: 10.11606/d.11.2012.tde-10082012-101205

Google Scholar

[14] Y. Imamura: Current Japanese Material Research, Elsevier Applied Science Vol. 11 (1993), p.75.

Google Scholar

[15] C.E.B. Foelkel, M.A.M. Brasil, L.E.G. Barrichelo: Métodos para determinação da densidade básica de cavacos para coníferas e folhosas. IPEF, 2/3 (1971) 65-74.

Google Scholar

[16] B.R. Vital, J.B. Wilson:Árvore Vol. 4 (1980), p.179.

Google Scholar

[17] L.P.E. Dacosta, C.R. Haselein, E.J. Santini, P.R. Schneider, L. Calegari: Ciência Florestal Vol. 15 (2005), p.421.

Google Scholar

[18] L.E.R. Paula, P.F. Trugilho, C.O. Assis, A.E.R. Baliza: Pesquisa Florestal Brasileira Vol. 31 (2011), p.103.

Google Scholar

[19] F. Souza Sobrinho, A.V. Pereira, F.J.S. Ledo, M.A. Botrel, J. Silva e Oliveira, D.F. Xavier: Pesq. Agropec. Bras. Vol. 40 (2005), p.873.

DOI: 10.1590/s0100-204x2005000900006

Google Scholar

[20] R.A. Flores, S. Urquiaga, B.J.R. Alves, L.S. Collier, J.B. Zanetti, R.M. Prado: Ciências Agrárias Vol. 34 (2013), p.127.

Google Scholar

[21] J. Fiorelli, F.A.R. Lahar, M.F. Nascimento, H. Savastano Junior, J.A. Rossignolo: Acta Scientiarum Technology Vol. 33 (2011), p.401.

DOI: 10.4025/actascitechnol.v33i4.9615

Google Scholar

[22] R.R. Melo, D.M. Stangerlin, A.P. Sousa, P.H.G. Cademartori, E. Schneid: Ciência Rural Vol. 45 (2015), p.35.

DOI: 10.1590/0103-8478cr20120970

Google Scholar

[23] C. Weber, S. Iwakiri: Ciencia Florestal Vol. 25 (2015), p.405.

Google Scholar

[24] R.R. Melo. E.J. Santini, C.R. Haselein, D.M. Stangerlin: Ciência Florestal Vol. 19 (2009), p.449.

Google Scholar

[25] American Society for Testing and Materials-ASTM D-1037. Standard test methods for evaluating properties of wood-based fiber and particle panel materials, Annual Book of ASTM Standards, Philadelphia, (1998).

Google Scholar

[26] F.C. Pierre, A.W. Ballarin, H.L. Palma: Revista Cerne Vol. 20 (2014), p.321.

Google Scholar