Use of Retorted Shale as Sulfur Adsorbent

Article Preview

Abstract:

The aim of this work is to use a residue from shale gas production, known as retorted shale (RS), as an alternative material for processes of sulfur adsorptive desulfurization in liquid fuels such as gasoline or diesel. Therefore, retorted shale samples were chemically modified. Two methods were applied: acid leaching and impregnation. The first method (RS-HCl) was an acid treatment with HCl solution (3M) in proportion of 1.5: 10. The second method (RS-Fe) was a wet impregnation of 20%wt. of Fe followed by calcination at 700°C for 2 h. The adsorbents were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption tests were performed using a solution of n-heptane and thiophene to simulate a fuel with an initial concentration of 500 ppm of sulfur. The results showed that both methods significantly altered the structure of the retorted shale, mainly the amount of Fe2O3. The adsorption test results indicated that the adsorbents prepared can remove up to 90% of the sulfur present.

You might also be interested in these eBooks

Info:

[1] L. Wei, P. Geng: Fuel Processing Technology Vol. 142 (2016), p.264.

Google Scholar

[2] D. Cebrucean, V. Cebrucean: Energy Procedia Vol. 63 (2014), p.18.

Google Scholar

[3] S. Li, T. Xu, P. Sun, Q. Zhou, H. Tan, S. Hui: Fuel Vol. 87 (2008), p.723.

Google Scholar

[4] M. Jain, D. Attarde, S.K. Gupta: Journal of Membrane Science Vol. 490 (2015), p.328.

Google Scholar

[5] W. Yinhui, Z. Rong, Q. Yanhong, P. Jianfei, L. Mengren, L. Jianrong, W. Yusheng, H. Min, S. Shijin: Fuel Vol. 166 (2016), p.543.

DOI: 10.1016/j.fuel.2015.11.019

Google Scholar

[6] S. Brunet, D. Mey, G. Pérot, C. Bouchy, F. Diehl: Applied Catalysis A: General Vol. 278 (2005), p.143.

DOI: 10.1016/j.apcata.2004.10.012

Google Scholar

[7] J.P. Nguetnkam, R. Kamga, F. Villiéras, G.E. Ekodeck, A. Razafitianamaharavo, J. Yvon: Applied Clay Science Vol. 52 (2011), p.122.

DOI: 10.1016/j.clay.2011.02.009

Google Scholar

[8] G.I. Danmaliki, T.A. Saleh: Chemical Engineering Journal Vol. 307 (2017), p.914.

Google Scholar

[9] R.L.B.A. Medeiros, H.P. Macedo, V.R.M. Melo, Â.A.S. Oliveira, J.M.F. Barros, M.A.F. Melo, D.M.A. Melo: International Journal of Hydrogen Energy Vol. 41 (2016), p.14047.

DOI: 10.1016/j.ijhydene.2016.06.246

Google Scholar

[10] W. Cai, Q. Zhou, Y. Xie, J. Liu: Fuel Vol. 159 (2015), p.887.

Google Scholar

[11] M. Niu, S. Wang, X. Han, X. Jiang: Applied Energy Vol. 111 (2013), p.234.

Google Scholar

[12] C. Fan, J. Yan, Y. Huang, X. Han, X. Jiang: Fuel Vol. 139 (2015), p.502.

Google Scholar

[13] Q. Yang, Y. Qian, A. Kraslawski, H. Zhou, S. Yang: Applied Energy Vol. 165 (2016), p.405.

Google Scholar

[14] E.T. Acar, S. Ortaboy, G. Atun: Chemical Engineering Journal Vol. 276 (2015), p.340.

Google Scholar

[15] P.M. Pimentel, R.M.P.B. Oliveira, D.M.A. Melo, M.J. Anjos, M.A.F. Melo, G. González: Applied Clay Science Vol. 48 (2010), p.375.

DOI: 10.1016/j.clay.2010.01.009

Google Scholar

[16] P.M. Pimentel, C.N. Silva Jr., D.M.A. Melo, M.A.F. Melo, G. Maldonado, D.M. Henrique: Cerâmica Vol. 52 (2006), p.194.

DOI: 10.1590/s0366-69132006000300013

Google Scholar

[17] M.F. Pimentel, B.B. Neto: Química Nova Vol. 19 (1996), p.10.

Google Scholar

[18] R.P. Orosco, M.d.C. Ruiz, L.I. Barbosa, J.A. González: International Journal of Mineral Processing Vol. 101 (2011), p.116.

Google Scholar

[19] G. Senanayake: Minerals Engineering, Vol. 24 (2011), p.1379.

Google Scholar

[20] R.E. Dinnebier, S.J.L. Billinge: Powder Diffraction: Theory and Practice. (Royal Society of Chemistry, 2008).

Google Scholar