Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Production

Abstract:

Article Preview

This paper presents the results obtained from the hydrogenation and decrepitation of three LaNi-based alloys, La0.7Mg0.3Al0.3Mn0.4Co0.5Ni3.8, La0.7Mg0.3Al0.3Mn0.4Cu0.5Ni3.8 and La0.7Mg0.3Al0.3Mn0.4Sn0.5Ni3.8, in the as-cast condition. The procedure for decrepitating the alloys to be used in the negative electrode of the batteries was carried out using a combination of various hydrogen pressures (2-9 bar) at room temperature. At 2 bar of H2 it was revealed that Co, Cu and Sn have influence on the microstructures of the hydrogenated alloys and on the efficiency of hydrogen decrepitation. None of these alloys required thermal heating to activate and start the hydrogen absorption process. The decrepitated materials were characterized by scanning electron microscopy (SEM). The electrochemical measurements were performed using the tested negative electrode between two Ni (OH)2 electrodes as a battery cell.

Info:

Periodical:

Edited by:

Clodomiro Alves Junior

Pages:

637-642

Citation:

E. P. Soares et al., "Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Production", Materials Science Forum, Vol. 930, pp. 637-642, 2018

Online since:

September 2018

Export:

Price:

$41.00

[1] Hongmei, L. Guoxun, Z.Chuanhua, W. Ruikun: Journal of Power Sources Vol. 77 (1999), p.123.

[2] J.J. Reilly, G.D. Adzic, J.R. Johnson, T. Vogt, S. Mukerjee, J. McBreen: J. Alloys and Compounds Vols. 293-295 (1999), p.569.

[3] F. Cuevas, J.M. Joubert, M. Latroche, A. Percheron-Guegan: Applied Physics A Mat. Sc. and Processing Vol. 72 (2001), p.225.

[4] F. Feng, M. Geng, D.O. Northwood, International Journal of Hydrogen Energy Vol. 26 (7) (2001), p.725.

[5] A. K. Shukla, S. Venugopalan, B. Hariprakash, Journal of Power Sources Vol. 100 (1-2) (2001), p.125.

[6] K. Hong: Journal of Alloys and Compounds Vol. 321 (2) (2001), p.307.

[7] R.C. Ambrosio, E.A. Ticianelli: Journal of Power Sources Vol. 110 (1) (2002), p.73.

[8] K. Kadir, D. Noreus, I. Yamashita: Journal Alloys and Compounds Vol. 345 (1-2) (2002), p.140.

[9] I. P. Jain, M. I. S. Abu Dakka: International Journal of Hydrogen Energy Vol. 27 (4) (2002), p.395.

[10] H. Ye, Y.X. Huang, T.S. Huang, H. Zhang: Journal of Alloys and Compounds Vols. 330-332 (2002), p.866.

[11] Y. Liu, H. Pan, M. Gao, Y. Zhu, Y. Lei, Q. Wang: International J. of Hydrogen Energy Vol. 29 (3) (2004), p.297.

[12] H. Pan, Q. Jin, M. Gao, Y. Liu, R. Li, Y. Lei: Journal of Alloys and Compounds Vol. 373 (2004), p.237.

[13] H. Pan, N. Chen, M. Gao, R. Li, Y. Lei, Q. Wang: Journal Alloys and Compounds Vol. 397 (1-2) (2005), p.306.

[14] H. Pan, X. Wu, M. Gao, N. Chen, Y. Yue, Y. Lei: International Journal of Hydrogen Energy Vol. 31 (2006), p.517.

[15] L.M.C. Zarpelon, E. Galego, H. Takiishi, R.N. Faria: Materials Research Vol. 11 (1) (2008), p.17.

[16] J.C.S. Casini, Z. Guo, H.K Liu, R.N. Faria, H. Takiishi: Batteries Vol. 1. (2015), p.3.

[17] L.M.C. Zarpelon, R.N. Faria: Materials Science Forum Vol. 802 (2014), p.421.

[18] J.C.S. Casini, Z.Guo, H.K Liu, E.A. Ferreira, R.N. Faria, H. Takiishi; Transactions of Nonferrous Metals Society of China Vol. 25 (2015), p.520.