[1]
Q. Pang, G.H. Wu, Z.Y. Xiu, L.T. Jiang, D.L. Sun, Microstructure, oxidation resistance and high-temperature strength of a new class of 3D opencell nickel-based foams,, Materials Characterization 70, (2012), 125-136.
DOI: 10.1016/j.matchar.2012.05.010
Google Scholar
[2]
P.S. Liy, K.M. Liang, Functional materials of porous metals made by P/M, electroplating and some other techniques,, Journal of Materilas Science 36, (2001), 5059 – 5072.
Google Scholar
[3]
David E. Laughlin, Kazuhiro Hono, Physical Metallurgy,, Newnes, (2014).
Google Scholar
[4]
K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers,, Mechanics of Materials 35, (2003), 1161–1176.
DOI: 10.1016/j.mechmat.2003.02.001
Google Scholar
[5]
T. Xiao, X. Hu, B. Heng, X. Chen, W. Huang, W. Tao, Ni(OH)2 nanosheets grown on graphene-coated nickel foam for high-performance pseudocapacitors,, Journal of Alloys and Compounds 549, (2013), 147–151.
DOI: 10.1016/j.jallcom.2012.09.028
Google Scholar
[6]
A. M. Fathi Dehkharghani and M. Divandari, Investigation of electroless copper plating on polyurethane foam, as an initial step of open cell foam production process,, Transactions of the IMF, (2015), 1-4.
DOI: 10.1179/0020296715z.000000000248
Google Scholar
[7]
Tian Qing-hua, Guo Xue-yi, Electroless copper plating on microcellular polyurethane foam,, Trans. Nonferrous Met. Soc. China 20, (2010), s283-s287.
DOI: 10.1016/s1003-6326(10)60057-x
Google Scholar
[8]
Andrew P. Abbott, Andrew Ballantyne, Robert C. Harris, Jamil A. Juma, A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions,, Electrochimica Acta 176, (2015), 718–726.
DOI: 10.1016/j.electacta.2015.07.051
Google Scholar
[9]
R. Sekar, K. K. Jagadesh, G. N. K. Ramesh Bapu, Development of black Ni−Co alloy films from modified Watts electrolyte and its morphology and structural characteristics,, Trans. Nonferrous Met. Soc. China 25, (2015), 1961−(1967).
DOI: 10.1016/s1003-6326(15)63804-3
Google Scholar
[10]
JIS H 7902 Standard, Method for Compressive Test of Porous Metals,, Japanese Standards Association, (2008).
Google Scholar
[11]
DIN 50134 Standard, Testing of Metallic Materials-Compression Test of Metallic Cellular Materials,, (2008).
Google Scholar
[12]
Liu, P. S., et al. Relationship between apparent electrical-conductivity and preparation conditions for nickel foam,, Journal of applied electrochemistry 30.10, (2000), 1183-1186.
Google Scholar
[13]
Ling Huang, Hong-BingWei, Fu-Sheng Ke, Xiao-Yong Fan, Jun-Tao Li, Shi-Gang Sun, Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn–Ni alloy electrodes,, ElectrochimicaActa 54, (2009), 2693–2698.
DOI: 10.1016/j.electacta.2008.11.044
Google Scholar
[14]
Liu, P. S., and K. M. Liang. Preparation and corresponding structure of nickel foam,, Materials science and technology 16.5, (2000), 575-578.
DOI: 10.1179/026708300101508108
Google Scholar
[15]
Mohamed Shehata Aly, Tensile properties of open-cell nickel foams,, Materials and Design 3, (2010), 2237–2240.
DOI: 10.1016/j.matdes.2009.10.018
Google Scholar
[16]
Douglas T. Queheillalt, Yasushi Katsumura, Haydn N.G. Wadley, Synthesis of stochastic open cell Ni-based foams,, Scripta Materialia 50, (2004), 313–317.
DOI: 10.1016/j.scriptamat.2003.10.016
Google Scholar
[17]
Akram Salehi, Abolfazl Babakhani, and S. Mojtaba Zebarjad. Microstructural and mechanical properties of Al–SiO2 nanocomposite foams produced by an ultrasonic technique., Materials Science and Engineering: A 638, (2015), 54-59.
DOI: 10.1016/j.msea.2015.04.024
Google Scholar