[1]
A. Dudka, F. Garcia-Moreno, N. Wanderka, et al. Structure and distribution of oxides in aluminium foam[J]. Acta Materialia, 2008, 56(15):3990-4001.
DOI: 10.1016/j.actamat.2008.04.040
Google Scholar
[2]
F. Triawan, K. Kishimoto, T. Adachi, et al. The elastic behavior of aluminum alloy foam under uniaxial loading and bending conditions[J]. Acta Materialia, 2012, 60(s 6–7):3084-3093.
DOI: 10.1016/j.actamat.2012.02.013
Google Scholar
[3]
W. Azzi, W.L. Roberts, A. Rabiei. A study on pressure drop and heat transfer in open cell metal foams for jet engine applications[J]. Materials & Design, 2007, 28(2):569-574.
DOI: 10.1016/j.matdes.2005.08.002
Google Scholar
[4]
G.L. Hao, Q.P. Xu, F.S. Han, et al. Processing and damping behavior of porous copper[J]. Powder Metallurgy, 2009, 52(2):145-150.
DOI: 10.1179/003258908x356885
Google Scholar
[5]
M.A. El-Hadek, S. Kaytbay. Mechanical and physical characterization of copper foam[J]. International Journal of Mechanics & Materials in Design, 2008, 4(1):63-69.
DOI: 10.1007/s10999-008-9058-2
Google Scholar
[6]
N. Bekoz, E. Oktay. High temperature mechanical properties of low alloy steel foams produced by powder metallurgy[J]. Materials & Design, 2014, 53(1):482-489.
DOI: 10.1016/j.matdes.2013.07.050
Google Scholar
[7]
N. Bekoz, E. Oktay. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size[J]. Materials Science & Engineering A, 2013, 576(8):82–90.
DOI: 10.1016/j.msea.2013.04.009
Google Scholar
[8]
G.J. Davies, S. Zhen. Metallic foams: their production, properties and applications [J]. Journal of Materials Science, 1983, 18(7):1899-(1911).
DOI: 10.1007/bf00554981
Google Scholar
[9]
D. Deng, D. Liang, Y. Tang, et al. Evaluation of capillary performance of sintered porous wicks for loop heat pipe[J]. Experimental Thermal & Fluid Science, 2013, 50(10):1-9.
DOI: 10.1016/j.expthermflusci.2013.04.014
Google Scholar
[10]
H.T. Cui. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39(39):26-28.
DOI: 10.1016/j.applthermaleng.2012.01.037
Google Scholar
[11]
K. Ji, X. Chen, H. Zhao, et al. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries[J]. Journal of Power Sources, 2014, 248(4):307-316.
DOI: 10.1016/j.jpowsour.2013.09.112
Google Scholar
[12]
Y. Zhu, H. Hu, S. Sun, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38(38):215-226.
DOI: 10.1016/j.ijrefrig.2013.04.012
Google Scholar
[13]
B. John. Manufacture, Characterization and Application of Cellular Metals and Metal Foams[J]. Progress in Materials Science, 2001, 46(6):559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[14]
H. Zhang, L. Chen, Y. Liu, et al. Experimental study on heat transfer performance of lotus-type porous copper heat sink[J]. International Journal of Heat & Mass Transfer, 2013, 56(s 1–2):172-180.
DOI: 10.1016/j.ijheatmasstransfer.2012.08.047
Google Scholar
[15]
X. Ji, J. Xu, A.M. Abanda. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal & Fluid Science, 2012, 40(7):93-102.
DOI: 10.1016/j.expthermflusci.2012.02.004
Google Scholar
[16]
D.H. Nam, R.H. Kim, D.W. Han, et al. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries[J]. Electrochimica Acta, 2012, 66(4):126-132.
DOI: 10.1016/j.electacta.2012.01.084
Google Scholar
[17]
Y.Y. Zhao, T. Fung, L.P. Zhang, et al. Lost carbonate sintering process for manufacturing metal foams[J]. Scripta Materialia, 2005, 52(4):295-298.
DOI: 10.1016/j.scriptamat.2004.10.012
Google Scholar
[18]
H. Du, J. Qi, S. Du, et al. Structure and oil retaining capacity of gasar copper fabricated by radial solidification with a combined crystallizer[J]. Journal of Materials Processing Technology, 2010, 210(11):1523-1528.
DOI: 10.1016/j.jmatprotec.2010.04.011
Google Scholar
[19]
W. Cheng, G. Qiao, H. Wang, et al. Preparation of High Porosity Copper Foam by Polyurethane Sponge Impregnation Method[J]. Rare Metal Materials & Engineering, 2009, 38(4):722-725.
Google Scholar
[20]
H. Bafti, A. Habibolahzadeh. Compressive properties of aluminum foam produced by powder-carbamide spacer route [J]. Materials and Design, 2013, 52(24):404-411.
DOI: 10.1016/j.matdes.2013.05.043
Google Scholar
[21]
Y.Y. Zhao, D.X. Sun. Novel sintering-dissolution process for manufacturing Al foams[J]. Scripta Materialia, 2001, 44(1):105-110.
DOI: 10.1016/s1359-6462(00)00548-0
Google Scholar
[22]
A. Bansiddhi, D.C. Dunand. Shape-memory NiTi foams produced by solid-state replication with NaF[J]. Intermetallics, 2007, 15(12):1612-1622.
DOI: 10.1016/j.intermet.2007.06.013
Google Scholar
[23]
F. Stergioudi, G. Karelis, E. Paulidou, et al. Production and structural characterization of tailored made open-cell alumina–vanadia foams[J]. Ceramics International, 2013, 39(7):8065-8072.
DOI: 10.1016/j.ceramint.2013.03.078
Google Scholar
[24]
A. Mansourighasri, N. Muhamad, A.B. Sulong. Processing titanium foams using tapioca starch as a space holder[J]. Journal of Materials Processing Technology, 2012, 212(1):83-89.
DOI: 10.1016/j.jmatprotec.2011.08.008
Google Scholar
[25]
T. Aydoğmuş, B. Şakir. Processing of porous TiNi alloys using magnesium as space holder[J]. Journal of Alloys & Compounds, 2009, 478(1):705-710.
DOI: 10.1016/j.jallcom.2008.11.141
Google Scholar
[26]
M.F. Ashby, A. Evans, N.A. Fleck, et al. Metal Foams: A Design Guide[J]. Materials & Design, 2002, 23(1):119-119.
DOI: 10.1016/s0261-3069(01)00049-8
Google Scholar
[27]
H. Yu, Z. Guo, B. Li, et al. Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties[J]. Materials Science & Engineering A, 2007, 454–455(16):542-546.
DOI: 10.1016/j.msea.2006.11.091
Google Scholar
[28]
J. Miltz, G. Gruenbaum. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering & Science, 2004, 21(15):1010-1014.
DOI: 10.1002/pen.760211505
Google Scholar