Fabrication, Structure and Property of Copper Foam

Article Preview

Abstract:

Copper foams by using CaCl2 as space holder were successfully manufactured by sintering and dissolution process. The porosity ranges from 75% to 91%, and cell size from 0.3mm to 3.0m. The volume fraction of CaCl2 and sintering temperature are the main factors that affect porosity of copper foam. The yield plateau stress of copper foams with porosity between 75.88% and 90.19% is in range of 12.1~1.2MPa. The yield plateau stress decreases with the increase of porosity. The energy absorption per unit volume (W) copper foams with porosity between 75.88% and 90.19% is in range of 6.17~0.63MJ/m3. Under the condition of identical porosity, the absorption energy per unit volume (W) of copper foam is about 43% higher than aluminum foam. The maximum ideal energy absorption efficiency of copper foam is about 0.74, it indicates that the copper foam can be used as a good absorbing material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-48

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Dudka, F. Garcia-Moreno, N. Wanderka, et al. Structure and distribution of oxides in aluminium foam[J]. Acta Materialia, 2008, 56(15):3990-4001.

DOI: 10.1016/j.actamat.2008.04.040

Google Scholar

[2] F. Triawan, K. Kishimoto, T. Adachi, et al. The elastic behavior of aluminum alloy foam under uniaxial loading and bending conditions[J]. Acta Materialia, 2012, 60(s 6–7):3084-3093.

DOI: 10.1016/j.actamat.2012.02.013

Google Scholar

[3] W. Azzi, W.L. Roberts, A. Rabiei. A study on pressure drop and heat transfer in open cell metal foams for jet engine applications[J]. Materials & Design, 2007, 28(2):569-574.

DOI: 10.1016/j.matdes.2005.08.002

Google Scholar

[4] G.L. Hao, Q.P. Xu, F.S. Han, et al. Processing and damping behavior of porous copper[J]. Powder Metallurgy, 2009, 52(2):145-150.

DOI: 10.1179/003258908x356885

Google Scholar

[5] M.A. El-Hadek, S. Kaytbay. Mechanical and physical characterization of copper foam[J]. International Journal of Mechanics & Materials in Design, 2008, 4(1):63-69.

DOI: 10.1007/s10999-008-9058-2

Google Scholar

[6] N. Bekoz, E. Oktay. High temperature mechanical properties of low alloy steel foams produced by powder metallurgy[J]. Materials & Design, 2014, 53(1):482-489.

DOI: 10.1016/j.matdes.2013.07.050

Google Scholar

[7] N. Bekoz, E. Oktay. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size[J]. Materials Science & Engineering A, 2013, 576(8):82–90.

DOI: 10.1016/j.msea.2013.04.009

Google Scholar

[8] G.J. Davies, S. Zhen. Metallic foams: their production, properties and applications [J]. Journal of Materials Science, 1983, 18(7):1899-(1911).

DOI: 10.1007/bf00554981

Google Scholar

[9] D. Deng, D. Liang, Y. Tang, et al. Evaluation of capillary performance of sintered porous wicks for loop heat pipe[J]. Experimental Thermal & Fluid Science, 2013, 50(10):1-9.

DOI: 10.1016/j.expthermflusci.2013.04.014

Google Scholar

[10] H.T. Cui. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39(39):26-28.

DOI: 10.1016/j.applthermaleng.2012.01.037

Google Scholar

[11] K. Ji, X. Chen, H. Zhao, et al. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries[J]. Journal of Power Sources, 2014, 248(4):307-316.

DOI: 10.1016/j.jpowsour.2013.09.112

Google Scholar

[12] Y. Zhu, H. Hu, S. Sun, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38(38):215-226.

DOI: 10.1016/j.ijrefrig.2013.04.012

Google Scholar

[13] B. John. Manufacture, Characterization and Application of Cellular Metals and Metal Foams[J]. Progress in Materials Science, 2001, 46(6):559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[14] H. Zhang, L. Chen, Y. Liu, et al. Experimental study on heat transfer performance of lotus-type porous copper heat sink[J]. International Journal of Heat & Mass Transfer, 2013, 56(s 1–2):172-180.

DOI: 10.1016/j.ijheatmasstransfer.2012.08.047

Google Scholar

[15] X. Ji, J. Xu, A.M. Abanda. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal & Fluid Science, 2012, 40(7):93-102.

DOI: 10.1016/j.expthermflusci.2012.02.004

Google Scholar

[16] D.H. Nam, R.H. Kim, D.W. Han, et al. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries[J]. Electrochimica Acta, 2012, 66(4):126-132.

DOI: 10.1016/j.electacta.2012.01.084

Google Scholar

[17] Y.Y. Zhao, T. Fung, L.P. Zhang, et al. Lost carbonate sintering process for manufacturing metal foams[J]. Scripta Materialia, 2005, 52(4):295-298.

DOI: 10.1016/j.scriptamat.2004.10.012

Google Scholar

[18] H. Du, J. Qi, S. Du, et al. Structure and oil retaining capacity of gasar copper fabricated by radial solidification with a combined crystallizer[J]. Journal of Materials Processing Technology, 2010, 210(11):1523-1528.

DOI: 10.1016/j.jmatprotec.2010.04.011

Google Scholar

[19] W. Cheng, G. Qiao, H. Wang, et al. Preparation of High Porosity Copper Foam by Polyurethane Sponge Impregnation Method[J]. Rare Metal Materials & Engineering, 2009, 38(4):722-725.

Google Scholar

[20] H. Bafti, A. Habibolahzadeh. Compressive properties of aluminum foam produced by powder-carbamide spacer route [J]. Materials and Design, 2013, 52(24):404-411.

DOI: 10.1016/j.matdes.2013.05.043

Google Scholar

[21] Y.Y. Zhao, D.X. Sun. Novel sintering-dissolution process for manufacturing Al foams[J]. Scripta Materialia, 2001, 44(1):105-110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar

[22] A. Bansiddhi, D.C. Dunand. Shape-memory NiTi foams produced by solid-state replication with NaF[J]. Intermetallics, 2007, 15(12):1612-1622.

DOI: 10.1016/j.intermet.2007.06.013

Google Scholar

[23] F. Stergioudi, G. Karelis, E. Paulidou, et al. Production and structural characterization of tailored made open-cell alumina–vanadia foams[J]. Ceramics International, 2013, 39(7):8065-8072.

DOI: 10.1016/j.ceramint.2013.03.078

Google Scholar

[24] A. Mansourighasri, N. Muhamad, A.B. Sulong. Processing titanium foams using tapioca starch as a space holder[J]. Journal of Materials Processing Technology, 2012, 212(1):83-89.

DOI: 10.1016/j.jmatprotec.2011.08.008

Google Scholar

[25] T. Aydoğmuş, B. Şakir. Processing of porous TiNi alloys using magnesium as space holder[J]. Journal of Alloys & Compounds, 2009, 478(1):705-710.

DOI: 10.1016/j.jallcom.2008.11.141

Google Scholar

[26] M.F. Ashby, A. Evans, N.A. Fleck, et al. Metal Foams: A Design Guide[J]. Materials & Design, 2002, 23(1):119-119.

DOI: 10.1016/s0261-3069(01)00049-8

Google Scholar

[27] H. Yu, Z. Guo, B. Li, et al. Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties[J]. Materials Science & Engineering A, 2007, 454–455(16):542-546.

DOI: 10.1016/j.msea.2006.11.091

Google Scholar

[28] J. Miltz, G. Gruenbaum. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering & Science, 2004, 21(15):1010-1014.

DOI: 10.1002/pen.760211505

Google Scholar